Featured Research

from universities, journals, and other organizations

Molecular switch controls the destiny of self-eating cells

Date:
July 17, 2013
Source:
Karolinska Institutet
Summary:
Researchers have discovered a previously unknown mechanism that controls whether a cell survives autophagy, a process that can be compared to the cell consuming parts of itself. The discovery means that it might now be possible to influence the process, which is involved in a wide variety of diseases.

In a new paper published in the journal Nature, researchers present a previously unknown mechanism that controls whether a cell survives autophagy, a process that can be compared to the cell consuming parts of itself. The discovery means that it might now be possible to influence the process, which is involved in a wide variety of diseases.

Related Articles


The study is the result of a collaboration of scientists at Karolinska Institutet in Sweden, University of Michigan, and University of California San Diego, USA, who were interested in finding out whether autophagy can be affected by events in the cell nucleus. Surprisingly, they discovered that a signal chain in the nucleus serves as a kind of molecular switch that determines whether the cell dies or survives.

Put simply autophagy is a process whereby the cell consumes parts of itself, and is a way for it to clean up abnormal lumps of proteins and rid itself of damaged organelles (the cell's 'organs') by breaking them down. The cell also uses the process when stressed by external circumstances, such as starvation, to keep itself alive until better times. So while autophagy can protect the cell, it can also lead to its death. However, just how the choice between life and death is controlled has remained a mystery.

Autophagy is involved in numerous diseases, such as cancer, diabetes, obesity, cardiovascular disease, chronic inflammations, Alzheimer's and Parkinson's diseases, as well as in physiological adaptation to exercise, the development of the immune system and ageing.

"Given the role of autophagy in human disease, all we have to do is select a disease model and test whether there's anything to be gained from influencing the new signal network that we've identified," says Dr Bertrand Joseph at Karolinska Institutet's Department of Oncology-Pathology, who headed the study.

To date, autophagy has mainly been considered a process in the cell's cytoplasm; the present study can completely overturn this view since the results indicate that events in the cell nucleus play an essential part in controlling the process once it has started. The DNA in the cell nucleus is packed around so-called histone proteins, on which different enzymes can attach acetyl groups. Such histone modification is a type of epigenetic regulation, which can influence gene expression without changing the DNA sequence. The modification of histones is a dynamic process, since some enzymes add the acetyl groups and other enzymes remove them.

The researchers studied how the outcome of the autophagy was affected by the acetylation of histone H4, and found that during the processes the acetylation of H4 decreased, which led to a reduction in the expression of autophagy-related genes. If this specific histone modification was blocked, the autophagic cells died.

"Our findings open up avenues for influencing autophagy," says Dr Joseph.

The research groups at Karolinska Institutet involved in the study are financed by grants from the Children's Cancer Foundation, the Swedish Cancer Society, the Swedish Research Council, and the Cancer Society in Stockholm.


Story Source:

The above story is based on materials provided by Karolinska Institutet. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jens Fόllgrabe, Melinda A. Lynch-Day, Nina Heldring, Wenbo Li, Robert B. Struijk, Qi Ma, Ola Hermanson, Michael G. Rosenfeld, Daniel J. Klionsky, Bertrand Joseph. The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature, 2013; DOI: 10.1038/nature12313

Cite This Page:

Karolinska Institutet. "Molecular switch controls the destiny of self-eating cells." ScienceDaily. ScienceDaily, 17 July 2013. <www.sciencedaily.com/releases/2013/07/130717132248.htm>.
Karolinska Institutet. (2013, July 17). Molecular switch controls the destiny of self-eating cells. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2013/07/130717132248.htm
Karolinska Institutet. "Molecular switch controls the destiny of self-eating cells." ScienceDaily. www.sciencedaily.com/releases/2013/07/130717132248.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lioness Has Rare Five-Cub Litter

Raw: Lioness Has Rare Five-Cub Litter

AP (Mar. 27, 2015) — A lioness in Pakistan has given birth to five cubs, twice the usual size of a litter. Queen gave birth to two other cubs just nine months ago. (March 27) Video provided by AP
Powered by NewsLook.com
Jockey Motion Tracking Reveals Racing Prowess

Jockey Motion Tracking Reveals Racing Prowess

Reuters - Innovations Video Online (Mar. 26, 2015) — Using motion tracking technology, researchers from the Royal Veterinary College (RVC) are trying to establish an optimum horse riding style to train junior jockeys, as well as enhance safety, health and well-being of both racehorses and jockeys. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Bear Cubs Tumble for the Media

Bear Cubs Tumble for the Media

Reuters - Light News Video Online (Mar. 26, 2015) — Two Andean bear cubs are unveiled at the U.S. National Zoo in Washington, D.C. Alicia Powell reports. Video provided by Reuters
Powered by NewsLook.com
Botswana Talks to End Illegal Wildlife Trade

Botswana Talks to End Illegal Wildlife Trade

AFP (Mar. 25, 2015) — Experts are gathering in Botswana to try to end the illegal wildlife trade that is decimating populations of elephants, rhinos and other threatened species. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins