Featured Research

from universities, journals, and other organizations

What if quantum physics worked on a macroscopic level? Researchers have successfully entangled optic fibers populated by 500 photons

Date:
July 25, 2013
Source:
Université de Genève
Summary:
Quantum physics concerns a world of infinitely small things. But for years, researchers have been attempting to observe the properties of quantum physics on a larger scale, even macroscopic.

Quantum physics concerns a world of infinitely small things. But for years, researchers from the University of Geneva (UNIGE), Switzerland, have been attempting to observe the properties of quantum physics on a larger scale, even macroscopic. In January 2011, they managed to entangle crystals, therefore surpassing the atomic dimension. Now, Professor Nicolas Gisin's team has successfully entangled two optic fibers, populated by 500 photons.

Unlike previous experiments which were carried out with the fiber optics of one photon, this new feat (which has been published in Nature Physics) begins to answer a fundamental question: can quantum properties survive on a macroscopic level?

For thirty years, physicists have been able to entangle photon pairs (particles of light). Thus, an action on the first particle will have an instant impact on the second, regardless of the distance and the obstacles between them. It occurs as if it were one single photon present at two different places. With this feat in mind, one question remains: can larger elements be entangled on a macroscopic level?

It would seem intuitive to think that the rules of physics that apply at the atomic level would be transferable to the macroscopic world. However, attempts to prove this have not been easy. In fact, when the size of a quantum system increases, it interacts more and more with its surrounding environment, which rapidly destroys its quantum properties. This phenomenon, known as quantum decoherence, is one of the limitations on the capability of macroscopic systems to retain their quantum properties.

From micro to macroscopic

Despite these limitations, and due to technological advances, scientists from UNIGE's Faculty of Science were able to entangle two fiber optics populated by 500 photons, unlike those that were previously entangled to only one photon.

To do this, the team led by Nicolas Gisin, professor in the Physics Section, created an entanglement between two fiber optics on a microscopic level before moving it to the macroscopic level. The entangled state survived the transition to a larger-scale world and the phenomenon could even be observed with the traditional means of detection, i.e. practically with the naked eye.

In order to verify that the entanglement survived in the macroscopic world, the physicists reconverted the phenomenon at the microscopic level.

"This first large-scale experiment paves the way for many applications that quantum physics offers. The entanglement at the macroscopic level is one of the main research areas in the field, and we hope to entangle increasingly large objects in the years to come," said Professor Gisin.


Story Source:

The above story is based on materials provided by Université de Genève. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. Bruno, A. Martin, P. Sekatski, N. Sangouard, R. T. Thew, N. Gisin. Displacement of entanglement back and forth between the micro and macro domains. Nature Physics, 2013; DOI: 10.1038/nphys2681

Cite This Page:

Université de Genève. "What if quantum physics worked on a macroscopic level? Researchers have successfully entangled optic fibers populated by 500 photons." ScienceDaily. ScienceDaily, 25 July 2013. <www.sciencedaily.com/releases/2013/07/130725104851.htm>.
Université de Genève. (2013, July 25). What if quantum physics worked on a macroscopic level? Researchers have successfully entangled optic fibers populated by 500 photons. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2013/07/130725104851.htm
Université de Genève. "What if quantum physics worked on a macroscopic level? Researchers have successfully entangled optic fibers populated by 500 photons." ScienceDaily. www.sciencedaily.com/releases/2013/07/130725104851.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins