Featured Research

from universities, journals, and other organizations

What if quantum physics worked on a macroscopic level? Researchers have successfully entangled optic fibers populated by 500 photons

Date:
July 25, 2013
Source:
Université de Genève
Summary:
Quantum physics concerns a world of infinitely small things. But for years, researchers have been attempting to observe the properties of quantum physics on a larger scale, even macroscopic.

Quantum physics concerns a world of infinitely small things. But for years, researchers from the University of Geneva (UNIGE), Switzerland, have been attempting to observe the properties of quantum physics on a larger scale, even macroscopic. In January 2011, they managed to entangle crystals, therefore surpassing the atomic dimension. Now, Professor Nicolas Gisin's team has successfully entangled two optic fibers, populated by 500 photons.

Unlike previous experiments which were carried out with the fiber optics of one photon, this new feat (which has been published in Nature Physics) begins to answer a fundamental question: can quantum properties survive on a macroscopic level?

For thirty years, physicists have been able to entangle photon pairs (particles of light). Thus, an action on the first particle will have an instant impact on the second, regardless of the distance and the obstacles between them. It occurs as if it were one single photon present at two different places. With this feat in mind, one question remains: can larger elements be entangled on a macroscopic level?

It would seem intuitive to think that the rules of physics that apply at the atomic level would be transferable to the macroscopic world. However, attempts to prove this have not been easy. In fact, when the size of a quantum system increases, it interacts more and more with its surrounding environment, which rapidly destroys its quantum properties. This phenomenon, known as quantum decoherence, is one of the limitations on the capability of macroscopic systems to retain their quantum properties.

From micro to macroscopic

Despite these limitations, and due to technological advances, scientists from UNIGE's Faculty of Science were able to entangle two fiber optics populated by 500 photons, unlike those that were previously entangled to only one photon.

To do this, the team led by Nicolas Gisin, professor in the Physics Section, created an entanglement between two fiber optics on a microscopic level before moving it to the macroscopic level. The entangled state survived the transition to a larger-scale world and the phenomenon could even be observed with the traditional means of detection, i.e. practically with the naked eye.

In order to verify that the entanglement survived in the macroscopic world, the physicists reconverted the phenomenon at the microscopic level.

"This first large-scale experiment paves the way for many applications that quantum physics offers. The entanglement at the macroscopic level is one of the main research areas in the field, and we hope to entangle increasingly large objects in the years to come," said Professor Gisin.


Story Source:

The above story is based on materials provided by Université de Genève. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. Bruno, A. Martin, P. Sekatski, N. Sangouard, R. T. Thew, N. Gisin. Displacement of entanglement back and forth between the micro and macro domains. Nature Physics, 2013; DOI: 10.1038/nphys2681

Cite This Page:

Université de Genève. "What if quantum physics worked on a macroscopic level? Researchers have successfully entangled optic fibers populated by 500 photons." ScienceDaily. ScienceDaily, 25 July 2013. <www.sciencedaily.com/releases/2013/07/130725104851.htm>.
Université de Genève. (2013, July 25). What if quantum physics worked on a macroscopic level? Researchers have successfully entangled optic fibers populated by 500 photons. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2013/07/130725104851.htm
Université de Genève. "What if quantum physics worked on a macroscopic level? Researchers have successfully entangled optic fibers populated by 500 photons." ScienceDaily. www.sciencedaily.com/releases/2013/07/130725104851.htm (accessed September 14, 2014).

Share This



More Matter & Energy News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) — U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Newsy (Sep. 14, 2014) — Winners of a contest for smart gun design are asking not to be named after others in the industry received threats for marketing similar products. Video provided by Newsy
Powered by NewsLook.com
Scientists Have Captured The Sound Of An Atom

Scientists Have Captured The Sound Of An Atom

Newsy (Sep. 12, 2014) — Scientists have captured the sound of a single atom by measuring its vibrations. We can't hear it, but it's reportedly the faintest sound possible. Video provided by Newsy
Powered by NewsLook.com
Solar Flare Surges Off Sun

Solar Flare Surges Off Sun

Reuters - US Online Video (Sep. 11, 2014) — NASA captures video of a significant flare surging off the sun. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins