Featured Research

from universities, journals, and other organizations

Starring role discovered for supporting cells in inner ear

Date:
July 25, 2013
Source:
NIH/National Institute on Deafness and Other Communication Disorders
Summary:
Researchers have found in mice that supporting cells in the inner ear, once thought to serve only a structural role, can actively help repair damaged sensory hair cells, the functional cells that turn vibrations into the electrical signals that the brain recognizes as sound.

Researchers have found in mice that supporting cells in the inner ear, once thought to serve only a structural role, can actively help repair damaged sensory hair cells, the functional cells that turn vibrations into the electrical signals that the brain recognizes as sound.

The study in the July 25, 2013 online edition of the Journal of Clinical Investigation reveals the rescuing act that supporting cells and a chemical they produce called heat shock protein 70 (HSP70) appear to play in protecting damaged hair cells from death. Finding a way to jumpstart this process in supporting cells offers a potential pathway to prevent hearing loss caused by certain drugs, and possibly by exposure to excess noise. The study was led by scientists at the National Institutes of Health.

Over half a million Americans experience hearing loss every year from ototoxic drugs -- drugs that can damage hair cells in the inner ear. These include some antibiotics and the chemotherapy drug cisplatin. In addition, about 15 percent of Americans between the ages of 20 and 69 have noise-induced hearing loss, which also results from damage to the sensory hair cells.

Once destroyed or damaged by noise or drugs, sensory hair cells in the inner ears of humans don't grow back or self-repair, unlike the sensory hair cells of other animals such as birds and amphibians. This has made exploring potential pathways to protect or regrow hair cells in humans a major focus of hearing research.

"If you're looking to protect hair cells, you should be looking at supporting cells," said senior author Lisa Cunningham, Ph.D., whose laboratory of sensory cell biology at the National Institute on Deafness and other Communication Disorders (NIDCD), a component of NIH, led the study. "Our study indicates that when the inner ear is under stress, the cell that responds by generating protective proteins is not a hair cell, but a supporting cell."

Earlier work by Dr. Cunningham's group and other labs had shown that HSP70 -- a protein produced in the inner ear after exposure to stressors such as environmental toxins, oxidative stress, chemical toxins, and noise -- can protect hair cells. However, the mechanism wasn't fully understood.

In this study, researchers exposed mouse utriclesto heat and then rapidly preserved them. The scientists found robust expression of HSP70; however, microscopy techniques showed that the protein was located only in the supporting cells, not the hair cells.

Further experiments showed that the supporting cells don't keep the HSP70 to themselves -- they secrete HSP70, which can then protect neighboring hair cells. When utricles that had not undergone heat shock were placed in the same culture as heat-shocked utricles, the hair cells in the untreated utricle were protected from cell death after exposure to an ototoxic antibiotic. Most likely, this could only have happened if the heat-shocked supporting cells shared their HSP70, since the non-heat shocked utricles didn't generate HSP70 of their own. Further, when the researchers used methods to prevent heat-shocked utricles from producing or secreting HSP70, this protective effect disappeared.

The researchers expected to see hair cells eventually take up the HSP70 produced by heat-shocked supporting cells, but this didn't happen. Using three different laboratory techniques, they couldn't find a trace of HSP70 inside hair cells in the mouse utricles.

Dr. Cunningham says this could mean one of two things. One possibility is that only tiny amounts of HSP70, at levels too low to be detected, are taken up by the hair cells. The other is that HSP70 works outside the cell, perhaps attaching to a receptor that doesn't need to be taken up into the hair cell to activate a protective signaling pathway. Follow-up work in Dr. Cunningham's lab will try to identify such a receptor.

Results from other labs studying supporting cells in the inner ear have shown that these cells can also kill hair cells that are too damaged for repair. "When a hair cell is under stress, it looks like a supporting cell is the one that decides whether it's going to live or die," said Dr. Cunningham.

Still to be explained are how the hair cell signals that it's in trouble, how the supporting cell senses the signal and, ultimately, how the supporting cell decides that it's going to save a hair cell or kill it.

However, a complete understanding of the protective mechanism isn't required to harness its clinical potential. Dr. Cunningham and her colleagues, in collaboration with a clinical team at NIDCD, are designing a human trial to look at ways to induce the production of HSP70 in the inner ear before ototoxic drug treatment.

The research was supported by NIDCD intramural funds DC000079 and NIDCD grants DC007613 and DC07613-SI.


Story Source:

The above story is based on materials provided by NIH/National Institute on Deafness and Other Communication Disorders. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute on Deafness and Other Communication Disorders. "Starring role discovered for supporting cells in inner ear." ScienceDaily. ScienceDaily, 25 July 2013. <www.sciencedaily.com/releases/2013/07/130725125306.htm>.
NIH/National Institute on Deafness and Other Communication Disorders. (2013, July 25). Starring role discovered for supporting cells in inner ear. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2013/07/130725125306.htm
NIH/National Institute on Deafness and Other Communication Disorders. "Starring role discovered for supporting cells in inner ear." ScienceDaily. www.sciencedaily.com/releases/2013/07/130725125306.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins