Featured Research

from universities, journals, and other organizations

Breakthrough in detecting DNA mutations could help treat tuberculosis, cancer

Date:
July 28, 2013
Source:
University of Washington
Summary:
Researchers have developed a new method that can look at a specific segment of DNA and pinpoint a single mutation, which could help diagnose and treat diseases such as cancer and tuberculosis.

This conceptual image shows probe and target complexes at different stages of the reaction that checks for mutations. The red dots represent mutations in a target base pair, while the illuminated green light indicates that no mutation was found.
Credit: Yan Liang, L2XY2.com

The slightest variation in a sequence of DNA can have profound effects. Modern genomics has shown that just one mutation can be the difference between successfully treating a disease and having it spread rampantly throughout the body.

Now, researchers have developed a new method that can look at a specific segment of DNA and pinpoint a single mutation, which could help diagnose and treat diseases such as cancer and tuberculosis. These small changes can be the root of a disease or the reason some infectious diseases resist certain antibiotics. The findings were published online this week (July 28) in the journal Nature Chemistry.

"We've really improved on previous approaches because our solution doesn't require any complicated reactions or added enzymes, it just uses DNA," said lead author Georg Seelig, a University of Washington assistant professor of electrical engineering and of computer science and engineering. "This means that the method is robust to changes in temperature and other environmental variables, making it well-suited for diagnostic applications in low-resource settings."

DNA is a type of nucleic acid, the biological molecule that gives all living things their unique genetic signatures. In a double strand of DNA, known as a double helix, a series of base pairs bond and encode our genetic information. As genomics research has progressed, it's clear that a change of just one base pair -- a sequence mutation, an insertion or a deletion -- is enough to trigger major biological consequences. This could explain the onset of disease, or the reason some diseases don't respond to usual antibiotic treatment.

Take, for example, tuberculosis -- a disease that's known to have drug-resistant strains. Its resistance to antibiotics often is due to a small number of mutations in a specific gene. If a person with tuberculosis isn't responding to treatment, it's likely because there is a mutation, Seelig said.

Now, researchers have the ability to check for that mutation preventatively.

Seelig, along with David Zhang of Rice University and Sherry Chen, a UW doctoral student in electrical engineering, designed probes that can pick out mutations in a single base pair in a target stretch of DNA. The probes allow researchers to look in much more detail for variations in long sequences -- up to 200 base pairs -- while current methods can detect mutations in stretches of up to only 20.

"In terms of specificity, our research suggests that we can do quadratically better, meaning that whatever the best level of specificity, our best will be that number squared," said Zhang, an assistant professor of bioengineering at Rice University.

The testing probes are designed to bind with a sequence of DNA that is suspected of having a mutation. The researchers do this by creating a complementary sequence of DNA to the double-helix strand in question. Then, they allow molecules containing both sequences to mix in a test tube in salt water, where they naturally will match up to one another if the base pairs are intact. Unlike previous technologies, the probe molecule checks both strands of the target double helix for mutations rather than just one, which explains the increased specificity.

The probe is engineered to emit a fluorescent glow if there's a perfect match between it and the target. If it doesn't illuminate, that means the strands didn't match and there was in fact a mutation in the target strand of DNA.

The researchers have filed a patent on the technology and are working with the UW Center for Commercialization. They hope to integrate it into a paper-based diagnostic test for diseases that could be used in parts of the world with few medical resources.

The research was funded by the National Institutes of Health, the National Science Foundation and the Department of Defense's Advanced Research Projects Agency.


Story Source:

The above story is based on materials provided by University of Washington. The original article was written by Michelle Ma. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sherry Xi Chen, David Yu Zhang, Georg Seelig. Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA. Nature Chemistry, 2013; DOI: 10.1038/nchem.1713

Cite This Page:

University of Washington. "Breakthrough in detecting DNA mutations could help treat tuberculosis, cancer." ScienceDaily. ScienceDaily, 28 July 2013. <www.sciencedaily.com/releases/2013/07/130728133857.htm>.
University of Washington. (2013, July 28). Breakthrough in detecting DNA mutations could help treat tuberculosis, cancer. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2013/07/130728133857.htm
University of Washington. "Breakthrough in detecting DNA mutations could help treat tuberculosis, cancer." ScienceDaily. www.sciencedaily.com/releases/2013/07/130728133857.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins