Featured Research

from universities, journals, and other organizations

Plasmonic black metals: Breakthrough in solar energy research?

Date:
July 30, 2013
Source:
DOE/Lawrence Livermore National Laboratory
Summary:
The use of plasmonic black metals could someday provide a pathway to more efficient photovoltaics -- the use of solar panels containing photovoltaic solar cells -- to improve solar energy harvesting, according to researchers.

Black metal samples with different nanostructures thickness and coated with aluminum laying over a high reflective flat aluminum surface.
Credit: Image courtesy of DOE/Lawrence Livermore National Laboratory

The use of plasmonic black metals could someday provide a pathway to more efficient photovoltaics (PV) -- the use of solar panels containing photovoltaic solar cells -- to improve solar energy harvesting, according to researchers at Lawrence Livermore National Laboratory (LLNL).

The LLNL Materials Engineering Division (MED) research team has made breakthroughs experimenting with black metals. These nanostructured metals are designed to have low reflectivity and high absorption of visible and infrared light. The MED research team recently published their black metals research results in a cover-page article in the May issue of Applied Physics Letters.

Authored by MED physicist and research team member Mihail Bora, the article details the work of the nanophotonics and plasmonics research team led by LLNL engineer Tiziana Bond.

It describes the team's concept of black metals, which are not classic metals but can be thought of as an extension of the black silicon concept. When silicon is treated in a certain way, such as being roughened at the nanoscale level, it traps light by multiple reflections, increasing its solar absorption. This gives the silicon a black surface that's able to better trap the full sun's wavelength spectrum.

Similarly, black metals are produced by some sort of random nanostructuring -- either in gold or silver -- without guaranteeing a full, reliable and repeatable full solar absorption. However, Bond's team developed a method to improve and control the absorption efficiency and basically turn the metals as black as they want, allowing them to increase, on demand, the absorption of a higher quantity of solar wavelengths. Her team built nanopillar structures that are trapping and absorbing all the relevant wavelengths of the entire solar spectrum.

"Our article was picked for the cover story of Applied Physics Letters because it represents cutting-edge work in the area of plasmonics, the broadband operation obtained with a clear design and its implication for the photovoltaic yield," Bond said.

This new LLNL technology could one day be used in the energy harvesting industry such as PV. By incorporating metallic nanostructures with strong coupling of incident light, broad spectral and angular coverage, the LLNL team is providing a path for more efficient photovoltaics and thermovoltaics (a form of energy collection) by means of plasmon-exciton conversion, according to Bond and Bora.


Story Source:

The above story is based on materials provided by DOE/Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mihail Bora, Elaine M. Behymer, Dietrich A. Dehlinger, Jerald A. Britten, Cindy C. Larson, Allan S. P. Chang, Keiko Munechika, Hoang T. Nguyen, Tiziana C. Bond. Plasmonic black metals in resonant nanocavities. Applied Physics Letters, 2013; 102 (25): 251105 DOI: 10.1063/1.4802910

Cite This Page:

DOE/Lawrence Livermore National Laboratory. "Plasmonic black metals: Breakthrough in solar energy research?." ScienceDaily. ScienceDaily, 30 July 2013. <www.sciencedaily.com/releases/2013/07/130730132620.htm>.
DOE/Lawrence Livermore National Laboratory. (2013, July 30). Plasmonic black metals: Breakthrough in solar energy research?. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/07/130730132620.htm
DOE/Lawrence Livermore National Laboratory. "Plasmonic black metals: Breakthrough in solar energy research?." ScienceDaily. www.sciencedaily.com/releases/2013/07/130730132620.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins