Featured Research

from universities, journals, and other organizations

Stem cells in urine easy to isolate and have potential for numerous therapies

Date:
July 31, 2013
Source:
Wake Forest Baptist Medical Center
Summary:
Could harvesting stem cells for therapy one day be as simple as asking patients for a urine sample? Researchers have identified stem cells in urine that can be directed to become multiple cell types.

Could harvesting stem cells for therapy one day be as simple as asking patients for a urine sample?
Credit: HSN / Fotolia

Could harvesting stem cells for therapy one day be as simple as asking patients for a urine sample? Researchers at Wake Forest Baptist Medical Center's Institute for Regenerative Medicine and colleagues have identified stem cells in urine that can be directed to become multiple cell types.

"These cells can be obtained through a simple, non-invasive low-cost approach that avoids surgical procedures," said Yuanyuan Zhang, M.D., Ph.D., assistant professor of regenerative medicine and senior researcher on the project.

Reporting online in the journal Stem Cells, the team successfully directed stem cells from urine to become bladder-type cells, such as smooth muscle and urothelial, the cells that line the bladder. But the urine-derived cells could also form bone, cartilage, fat, skeletal muscle, nerve, and endothelial cells, which line blood vessels. The multipotency of the cells suggests their use in a variety of therapies.

"These stem cells represent virtually a limitless supply of autologous cells for treating not only urology-related conditions such as kidney disease, urinary incontinence and erectile dysfunction, but could be used in other fields as well," said Zhang. "They could also potentially be used to engineer replacement bladders, urine tubes and other urologic organs."

Being able to use a patient's own stem cells for therapy is considered advantageous because they do not induce immune responses or rejection. However, because tissue-specific cells are a very small subpopulation of cells, they can be difficult to isolate from organs and tissues.

Zhang's team first identified the cells, which are a small subset of the many cells found in urine, in 2006. The current research builds on earlier studies by confirming the multipotency of the cells. In addition, the research found that unlike iPS cells or embryonic stem cells, the urine derived-stem cells do not form tumors when implanted in the body, indicating they may be safe for use in patients.

The research involved obtaining urine samples from 17 healthy individuals ranging in age from five to 75 years. Isolating the cells from urine involves minimal processing, according to the authors. Next, they evaluated the cells' ability to become multiple cell types.

Importantly, the cells differentiated into the three tissue layers (endoderm, ectoderm and mesoderm) that are a hallmark of true stem cells and also differentiated into the specific cell types mentioned earlier.

Next, the researchers placed cells that had been differentiated into smooth muscle and urothelial cells onto scaffolds made of pig intestine. When implanted in mice for one month, the cells formed multi-layer, tissue-like structures.

The urine-derived stem cells have markers of mesenchymal cells, which are adult stem cells from connective tissue such as bone marrow. They also have markers for pericytes, a subset of mesenchymal cells found in small blood vessels.

Where do the cells come from? Researchers suspect that the cells originate from the upper urinary tract, including the kidney. Female study participants who had received kidney transplants from male donors were found to have the y chromosome in their urine-derived stem cells, suggesting the kidney as the source of the cells.

"Identifying the origins of the cells will lead to a better understanding of the biology of this multipotent population of mesenchymal cells within the urinary tract system," said Zhang.

Co-researchers were Shantaram Bharadwaj, Ph.D., Guihua Liu, M.D., Ph.D., Yingai Shi, M.D., Ph.D., Rongpei Wu, M.D., Ph.D., Bin Yang, M.D., Ph.D., Anthony Atala, M.D., and Jan Rohozinski, Ph.D ., Wake Forest Baptist; Tong-chan He, M.D., Ph.D., the University of Chicago Medical Center; Yuxin Fan, M.D., Ph.D., and Xinyan Lu, M.D., Baylor College of Medicine; Xiaobo Zhou, Ph.D., the Methodist Hospital Research Institute; and Hong Liu, Ph.D., University of Oklahoma.


Story Source:

The above story is based on materials provided by Wake Forest Baptist Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shantaram Bharadwaj, Guihua Liu, Yingai Shi, Rongpei Wu, Bin Yang, Tongchuan He, Yuxin Fan, Xinyan Lu, Xiaobo Zhou, Hong Liu, Anthony Atala, Jan Rohozinski, Yuanyuan Zhang. Multi-Potential Differentiation of Human Urine-Derived Stem Cells: Potential for Therapeutic Applications in Urology. STEM CELLS, 2013; DOI: 10.1002/stem.1424

Cite This Page:

Wake Forest Baptist Medical Center. "Stem cells in urine easy to isolate and have potential for numerous therapies." ScienceDaily. ScienceDaily, 31 July 2013. <www.sciencedaily.com/releases/2013/07/130731093250.htm>.
Wake Forest Baptist Medical Center. (2013, July 31). Stem cells in urine easy to isolate and have potential for numerous therapies. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2013/07/130731093250.htm
Wake Forest Baptist Medical Center. "Stem cells in urine easy to isolate and have potential for numerous therapies." ScienceDaily. www.sciencedaily.com/releases/2013/07/130731093250.htm (accessed September 15, 2014).

Share This



More Health & Medicine News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Ministers and Experts Meet to Discuss Ebola Reponse

EU Ministers and Experts Meet to Discuss Ebola Reponse

AFP (Sep. 15, 2014) The European Commission met on Monday to coordinate aid that the EU can offer to African countries affected by the Ebola outbreak. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com
Respiratory Virus Spreads To Northeast, Now In 21 States

Respiratory Virus Spreads To Northeast, Now In 21 States

Newsy (Sep. 14, 2014) The respiratory virus Enterovirus D68, which targets children, has spread from the Midwest to 21 states. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins