Featured Research

from universities, journals, and other organizations

First experimental signs of a New Physics beyond the Standard Model

Date:
July 31, 2013
Source:
Universitat Auṭnoma de Barcelona
Summary:
Physicists have predicted deviations in the probability of one of the B meson decays that have been detected experimentally in the LHC accelerator at CERN. Confirmation of these results would be the first direct evidence of the existence of the 'new physics', a more fundamental theory than the current Standard Model.

A team of physicists from the Universitat Auṭnoma de Barcelona (UAB) and the French CNRS has predicted deviations in the probability of one of the B meson decays that have been detected experimentally in the LHC accelerator at CERN. Confirmation of these results would be the first direct evidence of the existence of the 'new physics', a more fundamental theory than the current Standard Model.

The Standard Model, which has given the most complete explanation up to now of the universe, has gaps, and is unable to explain phenomena like dark matter or gravitational interaction between particles. Physicists are therefore seeking a more fundamental theory that they call "New Physics," but up to now there has been no direct proof of its existence, only indirect observation of dark matter, as deduced, among other things, from the movement of the galaxies.

A team of physicists formed by the professor of Physics at Universitat Auṭnoma de Barcelona (UAB) Joaquim Matias, Javier Virto, postdoctoral researcher at the same university, and Sebastien Descotes Genon, from the Centre National de la Recherche Scientifique (CNRS) / Université Paris-Sud, has predicted that New Physics would imply the existence of deviations in the probability of a very specific decay of a particle, the B meson. Detecting these small deviations through an experiment would be the first direct proof of the existence of this fundamental theory.

On 19 July of this year, at the EPS 2013 international conference on particle physics in Stockholm, scientists at the LHCb detector, one of the large experiments being conducted by the CERN's LHC accelerator, presented the results of the experimental measurements of the B meson decay. The measurements showed deviations with respect to the predictions of the Standard Model that were previously calculated by UAB and CNRS researchers. The team of scientists have demonstrated that all these deviations show a coherent pattern and that has allowed them to identify their origin from a unique source.

The results of their analysis point to a deviation from the Standard Model prediction of 4.5 sigmas. If confirmed, this is a major event, since scientists regard 3 sigmas as "scientific proof" of New Physics and 5 sigmas as a "discovery."

"We must be prudent, because more studies and more experimental measurements will be needed for confirmation," explains Joaquim Matias, "but if they are confirmed this is the first direct proof of New Physics, a more general theory than the current Standard Model." "If the Higgs completed the Standard Model puzzle, these findings could be the first piece in an even bigger puzzle, adds Dr Matias.

The researchers claim that one of the New Physics models that could explain these results would be the one that postulates the existence of a new particle named Zprima, "but there could be lots of compatible models," points out Dr Matias.

The findings are so interesting that scientists at the other main LHC experiment, the CMS detector, want to take these measurements. The CMS has invited Dr. Matias to explain the theoretical details in a seminar to see it the results can be corroborated. At the same time, LHCb is also adding new data to improve the statistics and confirm the measurements next March.

Also participating in the study were Javier Virto, from the UAB's Department of Physics, and Sebastien Descotes-Genon from the University of Paris-Sud 11.

Beyond the Standard Model

For years, particle physicists have known that the theory they use, the Standard Model, despite being a very successful model in all tests carried out so far, has significant deficiencies such as lack of a candidate for dark matter. In addition, it has other problems such as the so-called fundamental problem of hierarchies or the matter-antimatter asymmetry of the universe.

Two of the central goals of the Large Hadron Collider (LHC) at CERN (Geneva) are finding the Higgs boson and finding what is called New Physics, a more fundamental and general theory than that of the Standard Model in which the latter would be just one particular case. Just a year ago, the Higgs boson was discovered, but the particle seems to fit perfectly into the Standard Model and currently gives us no clues regarding New Physics. 

At CERN there are four experiments, four large detectors (ATLAS, CMS, LHCb, and Alice) that record collisions between particles so that scientists can study their behaviour. The LHCb detector is designed to study the behaviour of quarks and what are known as rare decays, which are very infrequent.

On 19 July of this year, at EPS 2013, the European Physics Society's International Conference on Particle Physics, in Stockholm, Dr. Matias presented the theoretical predictions of his research team on one of these decays: that of a B meson, formed by a b quark and a d antiquark, into a pair of muons and a particle called K*. The UAB and CNRS researchers calculated and predicted how this decay should work and how it should change in different New Physics scenarios.

Shortly afterwards, an experimental physicist from the LHCb detector, Nicola Serra, presented at the same conference the first completed experimental results of that decay. Surprisingly, the experimental measurements were consistent with the deviations predicted by Joaquim Matias and his collaborators. For the first time, deviations of this type were consistent with theoretical predictions based on the presence of contributions that transcends the Standard Model.


Story Source:

The above story is based on materials provided by Universitat Auṭnoma de Barcelona. Note: Materials may be edited for content and length.


Cite This Page:

Universitat Auṭnoma de Barcelona. "First experimental signs of a New Physics beyond the Standard Model." ScienceDaily. ScienceDaily, 31 July 2013. <www.sciencedaily.com/releases/2013/07/130731122700.htm>.
Universitat Auṭnoma de Barcelona. (2013, July 31). First experimental signs of a New Physics beyond the Standard Model. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/07/130731122700.htm
Universitat Auṭnoma de Barcelona. "First experimental signs of a New Physics beyond the Standard Model." ScienceDaily. www.sciencedaily.com/releases/2013/07/130731122700.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) — The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) — The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) — President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) — Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins