Featured Research

from universities, journals, and other organizations

Researchers successfully spoof an $80 million yacht at sea

Date:
July 31, 2013
Source:
University of Texas at Austin
Summary:
A radio navigation research team discovered they could subtly coerce a 65-meter superyacht off its course, using a custom-made GPS device. The purpose of the experiment was to measure the difficulty of carrying out a spoofing attack at sea and to determine how easily sensors in the ship's command room could identify the threat.

This summer, a radio navigation research team from The University of Texas at Austin set out to discover whether they could subtly coerce a 213-foot yacht off its course, using a custom-made GPS device.
Credit: Image courtesy of University of Texas at Austin

This summer, a radio navigation research team from The University of Texas at Austin set out to discover whether they could subtly coerce a 213-foot yacht off its course, using a custom-made GPS device.

Related Articles


Led by assistant professor Todd Humphreys of the Department of Aerospace Engineering and Engineering Mechanics at the Cockrell School of Engineering, the team was able to successfully spoof an $80 million private yacht using the world's first openly acknowledged GPS spoofing device. Spoofing is a technique that creates false civil GPS signals to gain control of a vessel's GPS receivers. The purpose of the experiment was to measure the difficulty of carrying out a spoofing attack at sea and to determine how easily sensors in the ship's command room could identify the threat.

The researchers hope their demonstration will shed light on the perils of navigation attacks, serving as evidence that spoofing is a serious threat to marine vessels and other forms of transportation. Last year, Humphreys and a group of students led the first public capture of a GPS-guided unmanned aerial vehicle (UAV), or drone, using a GPS device created by Humphreys and his students.

"With 90 percent of the world's freight moving across the seas and a great deal of the world's human transportation going across the skies, we have to gain a better understanding of the broader implications of GPS spoofing," Humphreys said. "I didn't know, until we performed this experiment, just how possible it is to spoof a marine vessel and how difficult it is to detect this attack."

In June, the team was invited aboard the yacht, called the White Rose of Drachs, while it traveled from Monaco to Rhodes, Greece, on the Mediterranean Sea. The experiment took place about 30 miles off the coast of Italy as the yacht sailed in international waters.

From the White Rose's upper deck, graduate students Jahshan Bhatti and Ken Pesyna broadcasted a faint ensemble of civil GPS signals from their spoofing device -- a blue box about the size of a briefcase -- toward the ship's two GPS antennas. The team's counterfeit signals slowly overpowered the authentic GPS signals until they ultimately obtained control of the ship's navigation system.

Unlike GPS signal blocking or jamming, spoofing triggers no alarms on the ship's navigation equipment. To the ship's GPS devices, the team's false signals were indistinguishable from authentic signals, allowing the spoofing attack to happen covertly.

Once control of the ship's navigation system was gained, the team's strategy was to coerce the ship onto a new course using subtle maneuvers that positioned the yacht a few degrees off its original course. Once a location discrepancy was reported by the ship's navigation system, the crew initiated a course correction. In reality, each course correction was setting the ship slightly off its course line. Inside the yacht's command room, an electronic chart showed its progress along a fixed line, but in its wake there was a pronounced curve showing that the ship had turned.

"The ship actually turned and we could all feel it, but the chart display and the crew saw only a straight line," Humphreys said.

After several such maneuvers, the yacht had been tricked onto a parallel track hundreds of meters from its intended one -- the team had successfully spoofed the ship.

The experiment helps illustrate the wide gap between the capabilities of spoofing devices and what the transportation industry's technology can detect, Humphreys said.

Chandra Bhat, director of the Center for Transportation Research at The University of Texas at Austin, believes that the experiment highlights the vulnerability of the transportation sector to such attacks.

"The surprising ease with which Todd and his team were able to control a (multimillion) dollar yacht is evidence that we must invest much more in securing our transportation systems against potential spoofing," Bhat said.

It's important for the public and policymakers to understand that spoofing poses a threat that has far-reaching implications for transportation, Humphreys said.

"This experiment is applicable to other semi-autonomous vehicles, such as aircraft, which are now operated, in part, by autopilot systems," Humphreys said. "We've got to put on our thinking caps and see what we can do to solve this threat quickly."

As part of an ongoing research project, funding and travel expenses for this experiment was supported by UT Austin's Wireless Networking and Communications Group through the WNCG's Industrial Affiliates program.

Watch an animation of the spoofing attack, titled "Spoofing on the High Seas": http://youtu.be/ctw9ECgJ8L0


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas at Austin. "Researchers successfully spoof an $80 million yacht at sea." ScienceDaily. ScienceDaily, 31 July 2013. <www.sciencedaily.com/releases/2013/07/130731122829.htm>.
University of Texas at Austin. (2013, July 31). Researchers successfully spoof an $80 million yacht at sea. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2013/07/130731122829.htm
University of Texas at Austin. "Researchers successfully spoof an $80 million yacht at sea." ScienceDaily. www.sciencedaily.com/releases/2013/07/130731122829.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com
How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins