Featured Research

from universities, journals, and other organizations

New drugs to find the right target to fight Alzheimer's disease

Date:
August 2, 2013
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
The future is looking good for drugs designed to combat Alzheimer's disease. Scientists have unveiled how two classes of drug compounds currently in clinical trials work to fight the disease. Their research suggests that these compounds target the disease-causing peptides with high precision and with minimal side-effects.

Next-generation drugs designed to fight Alzheimer's disease look very promising. Scientists have unveiled the mechanisms behind two classes of compound currently being tested in clinical trials. They have also identified a likely cause of early-onset hereditary forms of the disease.

The future is looking good for drugs designed to combat Alzheimer's disease. EPFL scientists have unveiled how two classes of drug compounds currently in clinical trials work to fight the disease. Their research suggests that these compounds target the disease-causing peptides with high precision and with minimal side-effects. At the same time, the scientists offer a molecular explanation for early-onset hereditary forms of Alzheimer's, which can strike as early as thirty years of age. The conclusions of their research, which has been published in the journal Nature Communications, are very encouraging regarding the future of therapeutic means that could keep Alzheimer's disease in check.

Alzheimer's disease is characterized by an aggregation of small biological molecules known as amyloid peptides. We all produce these molecules; they play an essential antioxidant role. But in people with Alzheimer's disease, these peptides aggregate in the brain into toxic plaques -- called "amyloid plaques" -- that destroy the surrounding neurons.

The process starts with a long protein, "APP," which is located across the neuron's membrane. This protein is cut into several pieces by an enzyme, much like a ribbon is cut by scissors. The initial cut generates a smaller intracellular protein that plays a useful role in the neuron. Another cut releases the rest of APP outside the cell -- this part is the amyloid peptide.

For reasons not yet well understood, APP protein can be cut in several different places, producing amyloid peptides that are of varying lengths. Only the longer forms of the amyloid peptide carry the risk of aggregating into plaques, and people with Alzheimer's disease produce an abnormally high number of these.

A favorite Alzheimer's target: gamma secretase

The two next-generation classes of compound that are currently in clinical trials target an enzyme that cuts APP, known as gamma secretase. Until now, our understanding of the mechanism involved has been lacking. But with this work, the EPFL researchers were able to shed some more light on it by determining how the drug compounds affect gamma secretase and its cutting activity.

In most forms of Alzheimer's, abnormally large quantities of the long amyloid peptide 42 -- named like that because it contains 42 amino acids -- are formed. The drug compounds change the location where gamma secretase cuts the APP protein, thus producing amyloid peptide 38 instead of 42, which is shorter and does not aggregate into neurotoxic plaques.

Compared to previous therapeutic efforts, this is considerable progress. In 2010, Phase III clinical trials had to be abandoned, because the compound being tested inhibited gamma-secretase's function across the board, meaning that the enzyme was also deactivated in essential cellular differentiation processes, resulting to side-effects like in gastrointestinal bleeding and skin cancer.

"Scientists have been trying to target gamma secretase to treat Alzheimer's for over a decade," explains Patrick Fraering, senior author on the study and Merck Serono Chair of Neurosciences at EPFL. "Our work suggests that next-generation molecules, by modulating rather than inhibiting the enzyme, could have few, if any, side-effects. It is tremendously encouraging."

New insights into hereditary forms of the disease

During their investigation, the scientists also identified possible causes behind some hereditary forms of Alzheimer's disease. Early-onset Alzheimer's can appear as early as thirty years of age, with a life expectancy of only a few years. In vitro experiments and numerical simulations show that in early-onset patients, mutations in the APP protein gene modify the way by which APP is cut by the gamma-secretase enzyme. This results in overproduction of amyloid peptide 42, which then aggregates into amyloid plaques.

This research illuminates much that is unknown about Alzheimer's disease. "We have obtained extraordinary knowledge about how gamma secretase can be modulated," explains co-author Dirk Beher, scientific chief officer of Asceneuron, a spin-off of Merck Serono, the biopharmaceutical division of Merck KGaA, Darmstadt, Germany. "This knowledge will be invaluable for developing even better targeted drugs to fight the disease."


Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne. The original article was written by Lionel Pousaz. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mitko Dimitrov, Jean-René Alattia, Thomas Lemmin, Rajwinder Lehal, Andrzej Fligier, Jemila Houacine, Ishrut Hussain, Freddy Radtke, Matteo Dal Peraro, Dirk Beher, Patrick C. Fraering. Alzheimer’s disease mutations in APP but not γ-secretase modulators affect epsilon-cleavage-dependent AICD production. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3246

Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "New drugs to find the right target to fight Alzheimer's disease." ScienceDaily. ScienceDaily, 2 August 2013. <www.sciencedaily.com/releases/2013/08/130802080343.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2013, August 2). New drugs to find the right target to fight Alzheimer's disease. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2013/08/130802080343.htm
Ecole Polytechnique Fédérale de Lausanne. "New drugs to find the right target to fight Alzheimer's disease." ScienceDaily. www.sciencedaily.com/releases/2013/08/130802080343.htm (accessed October 22, 2014).

Share This



More Mind & Brain News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) — A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) — Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Your Birth Season Might Determine Your Temperament

Your Birth Season Might Determine Your Temperament

Newsy (Oct. 20, 2014) — A new study says the season you're born in can determine your temperament — and one season has a surprising outcome. Video provided by Newsy
Powered by NewsLook.com
Movies Might Desensitize Violence For Parents, Not Just Kids

Movies Might Desensitize Violence For Parents, Not Just Kids

Newsy (Oct. 20, 2014) — A study suggests that parents become desensitized to violent movies as well as children, which leads them to allow their kids to view violent films. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins