Featured Research

from universities, journals, and other organizations

Tumors elude anti-cancer drugs through 'fork reversal' repair

Date:
August 6, 2013
Source:
Saint Louis University Medical Center
Summary:
Researchers have found the first evidence that cancer cells’ DNA replication machinery can react to drug treatment with a repair process called fork reversal.

In research recently published in Nature Structural & Molecular Biology, Alessandro Vindigni, Ph.D., associate professor of biochemistry and molecular biology at Saint Louis University, discovered how cancer cells respond to the damage caused by an important class of anti-cancer drugs, topoisomerase I inhibitors. The discovery points to opportunities to improve chemotherapeutic regimens based on topoisomerase I inhibitor treatment and limit their toxic side effects.

"Most cancer chemotherapeutics act by inhibiting DNA replication," Vindigni said. "The drugs aim to target highly proliferating cancer cells rather than normal cells, but unfortunately many also are toxic for normal cells."

Cells, both healthy and cancerous, reproduce by replicating their DNA. Anti-cancer drugs like topoisomerase I (TOP1) inhibitors work by disrupting DNA replication in cancer cells.

As a cell's double helix-shaped DNA strands split apart and begin to copy themselves, the long strands get wound up, like a rope that's been twisted too many times. The coils must be released or replication can't continue to move forward. Topoisomerase is an enzyme that temporarily cuts the rope of DNA, lets it untwist, and puts it back together again. If you block this process with a TOP1 inhibitor, the rope remains knotted and cell duplication stops.

Scientists' understanding of how TOP1 inhibitors work has, however, been incomplete.

The working theory has been that TOP1 inhibitors leave a nick on one of the DNA strands by inhibiting the ability of the topoisomerase to seal the broken DNA. When the replication machinery collides with this nick, a double strand break occurs which stops the replication process. Double strand breaks are the worst kind of DNA lesions because both strands are compromised and require a complicate DNA repair pathway to be fixed.

In his recent findings, however, Vindigni and his team found that the cells are much "smarter" than they originally appeared.

Living up to their crafty reputation, cancer cells have a strategy to deal with this scenario. When TOP1 inhibition causes "replication stress" in the form of a nick on the DNA, the replication machinery pauses and reverses its course instead of colliding with the TOP1 induced DNA lesion. This mechanism of "replication fork reversal" gives time for the lesion to be repaired, so that replication can continue on again, preventing the hoped-for double strand break.

In fact, not only does the strand halt when it reaches the nick, but it senses the problem ahead of time, coming down the line. The replication structure does not operate blindly, but has advance notice of the injury, which gives it time to halt and repair the lesion before it reverses course and move into forward gear again.

"This is important because it is the first evidence that says that cancer cells' DNA replication machinery can react to drug treatment through fork reversal. Now we also uncovered the mechanism to restart the replication forks."

Vindigni's team also found that two important cellular proteins, PARP and RECQ1, control the fork reversal mechanism.

In particular, RECQ1, which is an enzyme that plays a key role in the maintenance of genome stability, appears to be responsible for restarting the reversed replication forks once the TOP1 induced lesion has been repaired. The reversed forks cannot restart without the help of RECQ1, suggesting it may be a promising target for a drug therapy.

Once they undercut the replication fork reversal process, researchers can return to the approach of encouraging a "fatal" double strand break for cancer cells by combing TOP1 inhibitors with novel inhibitors of the proteins that control the process of replication fork reversal and restart. In addition, inducing replication fork reversal by TOP1 inhibitor treatment and impeding reversed replication fork restart by RECQ1 inhibition should also stop DNA replication, thus allowing doctors to use lower TOP1 inhibitor doses, which, in turn, would mean fewer side effects.

What's next? Researchers' next step is to determine if this mechanism holds true not just in response to TOP1 inhibitors, but also with other cancer drugs, a finding that would broaden this paper's significance even further.

Another important step will be to search for other factors that control the replication fork reversal process, findings which would offer additional opportunities to disrupt the process.

"TOP1 drugs are widely used in clinic for many types of cancer. However, they also are highly toxic," Vindigni said. "We discovered the mechanism that the cancer cells' replication machinery uses to respond to treatment with these drugs. We also discovered the factors that control this mechanism.

"We hope to combine new RECQ1 inhibitors with existing drugs to create more effective and specific therapies with fewer toxic side effects."

This research was funded by the Saint Louis University's President's Research Fund, the Saint Louis University Cancer Center, the National Institutes of Health, the Associazione Italiana per la Ricerca sul Cancro and Swiss National Science Foundation grants, among others.

TAKE AWAYS: • Anti-cancer drugs like topoisomerase I (TOP1) inhibitors work by disrupting DNA replication

• Vindigni's research team found the first evidence that cancer cells' DNA replication machinery can react to drug treatment with a repair process called fork reversal, including a mechanism to restart the replication forks.

• The team described the mechanism of fork reversal and the factors that control it, PARP and RECQ1.

• Researchers hope to combine new RECQ1 inhibitors with existing drugs to create more effective and specific therapies with fewer toxic side effects.

Established in 1836, Saint Louis University School of Medicine has the distinction of awarding the first medical degree west of the Mississippi River. The school educates physicians and biomedical scientists, conducts medical research, and provides health care on a local, national and international level. Research at the school seeks new cures and treatments in five key areas: cancer, liver disease, heart/lung disease, aging and brain disease, and infectious disease.


Story Source:

The above story is based on materials provided by Saint Louis University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matteo Berti, Arnab Ray Chaudhuri, Saravanabhavan Thangavel, Shivasankari Gomathinayagam, Sasa Kenig, Marko Vujanovic, Federico Odreman, Timo Glatter, Simona Graziano, Ramiro Mendoza-Maldonado, Francesca Marino, Bojana Lucic, Valentina Biasin, Matthias Gstaiger, Ruedi Aebersold, Julia M Sidorova, Raymond J Monnat, Massimo Lopes, Alessandro Vindigni. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nature Structural & Molecular Biology, 2013; 20 (3): 347 DOI: 10.1038/nsmb.2501

Cite This Page:

Saint Louis University Medical Center. "Tumors elude anti-cancer drugs through 'fork reversal' repair." ScienceDaily. ScienceDaily, 6 August 2013. <www.sciencedaily.com/releases/2013/08/130806111039.htm>.
Saint Louis University Medical Center. (2013, August 6). Tumors elude anti-cancer drugs through 'fork reversal' repair. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2013/08/130806111039.htm
Saint Louis University Medical Center. "Tumors elude anti-cancer drugs through 'fork reversal' repair." ScienceDaily. www.sciencedaily.com/releases/2013/08/130806111039.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins