Featured Research

from universities, journals, and other organizations

Unruly plasmas

Date:
August 6, 2013
Source:
Christian-Albrechts-Universitaet zu Kiel
Summary:
Physicists performed a series of exact computer simulations of a liquid layer of charged particles (Plasma) and cooled it rapidly. According to the text book theorem the fluid would crystallize instantaneously when it is cooled, no matter whether a magnetic field is present or not. "We cooled the liquid very quickly, and in the presence of a strong magnetic field we observed a result that we first could not believe: the system remained fluid for a very long time," one of the researchers said.

The physicists performed a series of exact computer simulations of a liquid layer of charged particles (Plasma) and cooled it rapidly. According to the text book theorem the fluid would crystallize instantaneously when it is cooled, no matter whether a magnetic field is present or not. "We cooled the liquid very quickly, and in the presence of a strong magnetic field we observed a result that we first could not believe: the system remained fluid for a very long time," says Löwen.

The scientists from Düsseldorf and Kiel came up with a very simple explanation for this unexpected behaviour: the rapid cooling prevents that the particles settle in the energetically lowest state (the crystal). "Whenever the particles start to descend towards the valley, immediately their trajectory is bent upward again by the magnetic field. The particle circle the 'drain', but never reach it," adds Bonitz.

The fact that a cold system can remain fluid -- which means very mobile -- for a long time may have far-reaching consequences for a large number of systems that are subject to strong magnetic fields -- including the evolution cycle of compact stars but also fluids in the laboratory.

The results were published in the journal Physical Review Letters.


Story Source:

The above story is based on materials provided by Christian-Albrechts-Universitaet zu Kiel. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. Ott, H. Löwen, and M. Bonitz. Magnetic field blocks two-dimensional crystallization in strongly coupled plasmas. Physical Review Letters, 2013 DOI: 10.1103/PhysRevLett.111.065001

Cite This Page:

Christian-Albrechts-Universitaet zu Kiel. "Unruly plasmas." ScienceDaily. ScienceDaily, 6 August 2013. <www.sciencedaily.com/releases/2013/08/130806111153.htm>.
Christian-Albrechts-Universitaet zu Kiel. (2013, August 6). Unruly plasmas. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2013/08/130806111153.htm
Christian-Albrechts-Universitaet zu Kiel. "Unruly plasmas." ScienceDaily. www.sciencedaily.com/releases/2013/08/130806111153.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

Reuters - Innovations Video Online (Oct. 16, 2014) — Japanese researcher uses an eye-sensor camera to enable a bipedal robot to balance itself, while running on a treadmill. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Lockheed Martin's Fusion Concept Basically An Advertisement

Lockheed Martin's Fusion Concept Basically An Advertisement

Newsy (Oct. 15, 2014) — Lockheed Martin announced plans to develop the first-ever compact nuclear fusion reactor. But some experts said the excitement is a little premature. Video provided by Newsy
Powered by NewsLook.com
First Confirmed Case Of Google Glass Addiction

First Confirmed Case Of Google Glass Addiction

Buzz60 (Oct. 15, 2014) — A Google Glass user was treated for Internet Addiction Disorder caused from overuse of the device. Morgan Manousos (@MorganManousos) has the details on how many hours he spent wearing the glasses, and what his symptoms were. Video provided by Buzz60
Powered by NewsLook.com
Science Proves Why Pizza Is So Delicious

Science Proves Why Pizza Is So Delicious

Buzz60 (Oct. 15, 2014) — The American Chemical Society’s latest video about chemistry in every day life breaks down pizza, and explains exactly why it's so delicious. Gillian Pensavalle (@GillianWithaG) has the video. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins