New! Sign up for our free email newsletter.
Science News
from research organizations

Unruly plasmas

Date:
August 6, 2013
Source:
Christian-Albrechts-Universitaet zu Kiel
Summary:
Physicists performed a series of exact computer simulations of a liquid layer of charged particles (Plasma) and cooled it rapidly. According to the text book theorem the fluid would crystallize instantaneously when it is cooled, no matter whether a magnetic field is present or not. "We cooled the liquid very quickly, and in the presence of a strong magnetic field we observed a result that we first could not believe: the system remained fluid for a very long time," one of the researchers said.
Share:
FULL STORY

The physicists performed a series of exact computer simulations of a liquid layer of charged particles (Plasma) and cooled it rapidly. According to the text book theorem the fluid would crystallize instantaneously when it is cooled, no matter whether a magnetic field is present or not. "We cooled the liquid very quickly, and in the presence of a strong magnetic field we observed a result that we first could not believe: the system remained fluid for a very long time," says Löwen.

The scientists from Düsseldorf and Kiel came up with a very simple explanation for this unexpected behaviour: the rapid cooling prevents that the particles settle in the energetically lowest state (the crystal). "Whenever the particles start to descend towards the valley, immediately their trajectory is bent upward again by the magnetic field. The particle circle the 'drain', but never reach it," adds Bonitz.

The fact that a cold system can remain fluid -- which means very mobile -- for a long time may have far-reaching consequences for a large number of systems that are subject to strong magnetic fields -- including the evolution cycle of compact stars but also fluids in the laboratory.

The results were published in the journal Physical Review Letters.


Story Source:

Materials provided by Christian-Albrechts-Universitaet zu Kiel. Note: Content may be edited for style and length.


Journal Reference:

  1. T. Ott, H. Löwen, and M. Bonitz. Magnetic field blocks two-dimensional crystallization in strongly coupled plasmas. Physical Review Letters, 2013 DOI: 10.1103/PhysRevLett.111.065001

Cite This Page:

Christian-Albrechts-Universitaet zu Kiel. "Unruly plasmas." ScienceDaily. ScienceDaily, 6 August 2013. <www.sciencedaily.com/releases/2013/08/130806111153.htm>.
Christian-Albrechts-Universitaet zu Kiel. (2013, August 6). Unruly plasmas. ScienceDaily. Retrieved April 25, 2024 from www.sciencedaily.com/releases/2013/08/130806111153.htm
Christian-Albrechts-Universitaet zu Kiel. "Unruly plasmas." ScienceDaily. www.sciencedaily.com/releases/2013/08/130806111153.htm (accessed April 25, 2024).

Explore More

from ScienceDaily

RELATED STORIES