Featured Research

from universities, journals, and other organizations

Unruly plasmas

Date:
August 6, 2013
Source:
Christian-Albrechts-Universitaet zu Kiel
Summary:
Physicists performed a series of exact computer simulations of a liquid layer of charged particles (Plasma) and cooled it rapidly. According to the text book theorem the fluid would crystallize instantaneously when it is cooled, no matter whether a magnetic field is present or not. "We cooled the liquid very quickly, and in the presence of a strong magnetic field we observed a result that we first could not believe: the system remained fluid for a very long time," one of the researchers said.

The physicists performed a series of exact computer simulations of a liquid layer of charged particles (Plasma) and cooled it rapidly. According to the text book theorem the fluid would crystallize instantaneously when it is cooled, no matter whether a magnetic field is present or not. "We cooled the liquid very quickly, and in the presence of a strong magnetic field we observed a result that we first could not believe: the system remained fluid for a very long time," says Löwen.

Related Articles


The scientists from Düsseldorf and Kiel came up with a very simple explanation for this unexpected behaviour: the rapid cooling prevents that the particles settle in the energetically lowest state (the crystal). "Whenever the particles start to descend towards the valley, immediately their trajectory is bent upward again by the magnetic field. The particle circle the 'drain', but never reach it," adds Bonitz.

The fact that a cold system can remain fluid -- which means very mobile -- for a long time may have far-reaching consequences for a large number of systems that are subject to strong magnetic fields -- including the evolution cycle of compact stars but also fluids in the laboratory.

The results were published in the journal Physical Review Letters.


Story Source:

The above story is based on materials provided by Christian-Albrechts-Universitaet zu Kiel. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. Ott, H. Löwen, and M. Bonitz. Magnetic field blocks two-dimensional crystallization in strongly coupled plasmas. Physical Review Letters, 2013 DOI: 10.1103/PhysRevLett.111.065001

Cite This Page:

Christian-Albrechts-Universitaet zu Kiel. "Unruly plasmas." ScienceDaily. ScienceDaily, 6 August 2013. <www.sciencedaily.com/releases/2013/08/130806111153.htm>.
Christian-Albrechts-Universitaet zu Kiel. (2013, August 6). Unruly plasmas. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2013/08/130806111153.htm
Christian-Albrechts-Universitaet zu Kiel. "Unruly plasmas." ScienceDaily. www.sciencedaily.com/releases/2013/08/130806111153.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cablevision Enters Wi-Fi Phone Fray

Cablevision Enters Wi-Fi Phone Fray

Reuters - Business Video Online (Jan. 26, 2015) — The entry by Cablevision and Google could intensify the already heated price wars for mobile phone service. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Hector the Robot Mimics a Giant Stick Insect

Hector the Robot Mimics a Giant Stick Insect

Reuters - Innovations Video Online (Jan. 26, 2015) — A robot based on a stick insect can navigate difficult terrain autonomously and adapt to its surroundings. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Pilot Uses Full-Plane Parachute in Crash

Raw: Pilot Uses Full-Plane Parachute in Crash

AP (Jan. 26, 2015) — A pilot en route to Hawaii crashed his single-engine plane into the Pacific Ocean Monday and escaped safely thanks to the use of a full-plane parachute. US Coast Guard video captures the dramatic landing. (Jan. 26) Video provided by AP
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) — Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins