Featured Research

from universities, journals, and other organizations

Protein changes are discovered that control whether a gene functions are discovered

Date:
August 6, 2013
Source:
Penn State
Summary:
Changes to proteins called histones, which are associated with DNA, can control whether or not a gene is allowed to function. The changes may be important in maintaining the genes' "expression potential" so that future cells behave as their parent cells did. The discovery may have implications for the study of diseases such as cancer.

Three fluorescent images of yeast cells as they grow from two single cells (left) to a small cell cluster (right). The green color represents the expression of the HO gene. The red color at the bud neck is a marker for cell cycle.
Credit: Bai lab, Penn State University

By studying a gene in yeast, a team of scientists has found that modifications to histones -- proteins associated with DNA -- can control whether or not a gene is allowed to function and may be important in maintaining the genes' "expression potential" so that future cells behave as their parent cells did. The research was led by Lu Bai, an assistant professor of biochemistry, molecular biology, and physics at Penn State University, in collaboration with David Stillman at the University of Utah. The discovery, which may have implications for the study of diseases such as cancer, will be published in a print edition of the journal Proceedings of the National Academy of Sciences.

Related Articles


Bai explained that gene expression -- the process by which certain genes are regulated or turned "on" or "off" -- is one of the most fundamental processes in the life of any biological cell. Different programs of gene expression -- even when cells have the same DNA -- can lead to different cellular behavior and function. For example, even though a human muscle cell and a human nerve cell have identical DNA, they behave and function very differently. Misregulation of gene expression can affect cell fitness and lead to diseases. "Gene expression tends to vary from cell to cell," Bai said. "Misregulation may happen in a small fraction of cells, and these cells may cause disease later on. Therefore it is important to study gene regulation at the single-cell level."

Using a fluorescent video of cell division, Bai and her team were able to observe how a gene called HO was expressed in single yeast cells over multiple cell divisions. Normally, the expression of HO allows budding yeast to change sex -- from "male" to "female" and vice versa. "Interestingly, HO expression -- and thus sex change -- is supposed to occur only in 'mother' cells but not the newly budded 'daughter' cells," Bai explained. After observing the video, team members found that HO was expressed in 98 percent of the mother cells but also in 3 percent of the daughter cells. "The vast majority of both the mother cells and the daughter cells responded as they were supposed to," Bai said. "But, in a small percentage of the cells, the gene regulation went wrong."

The pressing question for Bai's team then was, why did the HO gene regulation fail in a small population of cells -- in 2 percent of the mother cells and 3 percent of the daughter cells? She discovered that the answer seems to lie in histones, a major protein complex associated with DNA. "We found that changes in histone configurations affect the fraction of cells in which the HO expression was misregulated. In addition, we found that, in some conditions, the HO expression can 'remember' itself: If HO is turned on in one cell, it is more likely to be turned on in its progeny cells. We showed that this short-term memory of the HO expression seems to be inherited through histone modifications," Bai said. She added that further study of gene expression, specifically at the level of individual cells, can have important implications for disease research.

In addition to Bai and Stillman, other researchers who contributed to this study include Qian Zhang, Youngdae Yoona, Juan Antonio Raygoza Garay, and Michael M. Mwangi from Penn State; Yaxin Yu and Emily J. Parnell from the University of Utah; and Frederick R. Cross from the Rockefeller University.

The research was funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Penn State. The original article was written by Katrina Voss. Note: Materials may be edited for content and length.


Journal Reference:

  1. Q. Zhang, Y. Yoon, Y. Yu, E. J. Parnell, J. A. R. Garay, M. M. Mwangi, F. R. Cross, D. J. Stillman, L. Bai. Stochastic expression and epigenetic memory at the yeast HO promoter. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1306113110

Cite This Page:

Penn State. "Protein changes are discovered that control whether a gene functions are discovered." ScienceDaily. ScienceDaily, 6 August 2013. <www.sciencedaily.com/releases/2013/08/130806203531.htm>.
Penn State. (2013, August 6). Protein changes are discovered that control whether a gene functions are discovered. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2013/08/130806203531.htm
Penn State. "Protein changes are discovered that control whether a gene functions are discovered." ScienceDaily. www.sciencedaily.com/releases/2013/08/130806203531.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins