Featured Research

from universities, journals, and other organizations

Molecules form 2-D patterns never before observed: Nanoscience experiments produce elusive 5-vertex tilings

Date:
August 8, 2013
Source:
Technische Universitaet Muenchen
Summary:
Tessellation patterns that have fascinated mathematicians since Kepler worked out their systematics 400 years ago -- and that more recently have caught the eye of artists and crystallographers -- can now be seen in the laboratory. They first took shape on a surface more perfectly two-dimensional than any sheet of paper, a single layer of atoms and molecules atop an atomically smooth substrate. Physicists coaxed these so-called Kepler tilings "onto the page" through guided self-assembly of nanostructures.

The 2-D tessellation pattern known as the "semiregular snub square tiling" stands out clearly in this image, which combines scanning tunneling microscopy with computer graphics. The pattern, observed in a surface architecture just one molecule thick, was formed by self-assembly of linear organic linkers, imaged as rods, and lanthanide cerium centers, visualized as bright protrusions. The area shown measures less than 25 nanometers across.
Credit: Barth Lab, copyright TUM

Tessellation patterns that have fascinated mathematicians since Johannes Kepler worked out their systematics 400 years ago -- and that more recently have caught the eye of both artists and crystallographers -- can now be seen in the laboratory. They first took shape on a surface more perfectly two-dimensional than any sheet of writing paper, a single layer of atoms and molecules atop an atomically smooth substrate. Physicists coaxed these so-called Kepler tilings "onto the page" through guided self-assembly of nanostructures.

The experiments were carried out by postdoctoral researcher David Ecija, PhD candidate Jose Ignacio Urgel and colleagues in the Physics Department of Technische Universitaet Muenchen (TUM), in collaboration with scientists in Karlsruhe and Zurich. They reported their findings in the Proceedings of the National Academy of Sciences.

Results open a new line of research

Organic molecules equipped with functional groups to express distinct linkages to metal atoms were deposited onto a smooth silver substrate under vacuum conditions. Subsequently the organic layer on this platform was exposed to an atomic flux of the lanthanide cerium. At a certain ratio of cerium atoms to molecules, self-assembly produced a symmetrical complex 2-D pattern described originally by Kepler and known today as the snub square tiling. Clearly identifiable through scanning tunneling microscopy was a recurring, five-vertex connecting element less than one nanometer across, a cerium-ligand coordination unit.

That the snub square tiling pattern had never been fabricated and seen at the molecular level by exploiting self-assembly protocols was interesting in itself. Beyond that, the physicists explain, every new surface architecture could potentially open the way to novel physics and chemistry, and until now five-vertex structures have proven elusive. In particular, the fact that the lanthanide element cerium played such a key role marks this as the beginning of a new line of research.

This is the first time the TUM researchers -- members of Prof. Johannes Barth's Institute for Molecular Nanoscience and Chemical Physics of Interfaces -- have coordinated molecules with a lanthanide, and the first time anyone has done this in 2-D. "And lanthanides are special," David Ecija explains. "They have very intriguing optical, magnetic, and chemical properties that could be interesting for nanoscience, and possibly also for nanotechnology. Now we have a new playground for research with the lanthanides, and beyond."


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Ecija, J. I. Urgel, A. C. Papageorgiou, S. Joshi, W. Auwarter, A. P. Seitsonen, S. Klyatskaya, M. Ruben, S. Fischer, S. Vijayaraghavan, J. Reichert, J. V. Barth. Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly. Proceedings of the National Academy of Sciences, 2013; 110 (17): 6678 DOI: 10.1073/pnas.1222713110

Cite This Page:

Technische Universitaet Muenchen. "Molecules form 2-D patterns never before observed: Nanoscience experiments produce elusive 5-vertex tilings." ScienceDaily. ScienceDaily, 8 August 2013. <www.sciencedaily.com/releases/2013/08/130808123823.htm>.
Technische Universitaet Muenchen. (2013, August 8). Molecules form 2-D patterns never before observed: Nanoscience experiments produce elusive 5-vertex tilings. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2013/08/130808123823.htm
Technische Universitaet Muenchen. "Molecules form 2-D patterns never before observed: Nanoscience experiments produce elusive 5-vertex tilings." ScienceDaily. www.sciencedaily.com/releases/2013/08/130808123823.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins