Featured Research

from universities, journals, and other organizations

Deep Earth heat surprise: New findings on how heat is conducted in the deep lower mantle

Date:
August 9, 2013
Source:
Carnegie Institution
Summary:
Researchers have for the first time experimentally mimicked the pressure conditions of Earths' deep mantle to measure thermal conductivity using a new measurement technique on the mantle material magnesium oxide. They found that heat transfer is lower than other predictions, with total heat flow across the Earth of about 10.4 terawatts, about 60 percent of the power used today by civilization. They also found that conductivity has less dependence on pressure conditions than predicted.

The key to understanding Earth's evolution is to look at how heat is conducted in the deep lower mantle -- a region some 400 to 1,800 miles (660 to 2,900 kilometers) below the surface. Researchers at the Carnegie Institution, with colleagues at the University of Illinois, have for the first time been able to experimentally simulate the pressure conditions in this region to measure thermal conductivity using a new measurement technique developed by the collaborators and implemented by the Carnegie team on the mantle material magnesium oxide (MgO). They found that heat transfer is lower than other predictions, with total heat flow across Earth of about 10.4 terawatts, which is about 60 % of the power used today by civilization. They also found that conductivity has less dependence on pressure conditions than predicted.

Related Articles


The research is published in the August 9, online Scientific Reports.

Lead author of the study Douglas Dalton explains: "The lower mantle sits on top of the core where pressures range from 230,000 to 1.3 million times the pressure at sea level. Temperatures are like an inferno -- from about 2,800°F to 6,700 °F. The major constituents are oxides of magnesium, silicon and calcium. Heat transfer occurs at a higher rate across materials of high thermal conductivity than across materials of low thermal conductivity, thus these low thermal conductivity oxides are insulating."

The atoms of the major mantle materials are solid solutions and are in a disordered arrangement, which affects the way they conduct heat. Until now, the effect of this disorder on the way heat was conducted could only be estimated with experiments at low pressures. The pressure dependence on thermal conductivity has not been addressed in disordered materials before.

"We squeezed the samples between two diamond tips in an anvil cell and measured the thermal conductivity of the samples, debuting a technique called time-domain thermoreflectance," remarked co-author Alexander Goncharov. "We went up to 600,000 times atmospheric pressure at room temperature. This technique allows us to measure the thermal properties of the material from the change in the reflectance of the material's surface, thus avoiding the need of contacting the material of interest as required by conventional techniques. We then compared the results to theoretical models."

The scientists also showed that there is less dependence of thermal conductivity on pressure than had been predicted. Calculations showed that at the core-mantle boundary there is an estimated total heat flow of 10.4 terawatts across Earth.

"The results provide important bounds on the degree to which heat is transferred by convection as opposed to conduction in the lower mantle," said Russell J. Hemley, director of Carnegie's Geophysical Laboratory. "The next step will be to examine effects of different mineral components on the thermal conductivity and to better understand the atomic scale basis of convective motion of these materials within the broader context of mantle dynamics."

"The results suggest that this technique could really advance other high pressure and temperature studies of the deep Earth and provide a better understanding of how Earth is evolving and how materials act under the intense conditions," concluded Goncharov.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Douglas Allen Dalton, Wen-Pin Hsieh, Gregory T. Hohensee, David G. Cahill, Alexander F. Goncharov. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure. Scientific Reports, 2013; 3 DOI: 10.1038/srep02400

Cite This Page:

Carnegie Institution. "Deep Earth heat surprise: New findings on how heat is conducted in the deep lower mantle." ScienceDaily. ScienceDaily, 9 August 2013. <www.sciencedaily.com/releases/2013/08/130809084121.htm>.
Carnegie Institution. (2013, August 9). Deep Earth heat surprise: New findings on how heat is conducted in the deep lower mantle. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2013/08/130809084121.htm
Carnegie Institution. "Deep Earth heat surprise: New findings on how heat is conducted in the deep lower mantle." ScienceDaily. www.sciencedaily.com/releases/2013/08/130809084121.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Maine Storm Surge Sparks Power Explosions

Raw: Maine Storm Surge Sparks Power Explosions

AP (Apr. 21, 2015) — Police dash cam video shows a series of explosions along the beach in Maine as heavy storm surge soaked electrical transformers. (April 21) Video provided by AP
Powered by NewsLook.com
Searching For The Loch Ness Monster? Try Google Street View

Searching For The Loch Ness Monster? Try Google Street View

Newsy (Apr. 21, 2015) — For the anniversary of the notorious "Surgeon&apos;s Photo" of the Loch Ness monster, Google used Street View to let those online join the search. Video provided by Newsy
Powered by NewsLook.com
Going Ape: Sierra Leone Chimpanzees Hail Ebola Retreat

Going Ape: Sierra Leone Chimpanzees Hail Ebola Retreat

AFP (Apr. 21, 2015) — As money runs out at Tacugama Chimpanzee Sanctuary in Sierra Leone, around 85 chimps are facing homelessness. The centre closed when the Ebola epidemic was ravaging the country but now that closure is beginning to look permanent. Video provided by AFP
Powered by NewsLook.com
Solar Plane Completes 6th Leg of Quest to Circumnavigate Globe

Solar Plane Completes 6th Leg of Quest to Circumnavigate Globe

AFP (Apr. 21, 2015) — Solar Impulse 2 lands in the Chinese city of Nanjing, finishing the sixth stage of its landmark 12-leg quest to circumnavigate the globe powered only by the sun. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins