Featured Research

from universities, journals, and other organizations

New electron beam writer enables next-gen biomedical and information technologies

Date:
August 12, 2013
Source:
University of California, San Diego
Summary:
The new electron beam writer housed in the Nano3 cleanroom facility at the Qualcomm Institute is important for electrical engineering professor Shadi Dayeh’s two major areas of research. He is developing next-generation, nanoscale transistors for integrated electronics; and he is developing neural probes that have the capacity to extract electrical signals from individual brain cells and transmit the information to a prosthetic device or computer.

Ryan Anderson, a process engineer for the Nano3 facility in the Qualcomm Institute, prepares to remove a sample from the Vistec EBPG5200 electron beam writer.
Credit: UC San Diego Jacobs School of Engineering.

The new electron beam writer housed in the Nano3 cleanroom facility at the Qualcomm Institute is important for electrical engineering professor Shadi Dayeh's two major areas of research. He is developing next-generation, nanoscale transistors for integrated electronics; and he is developing neural probes that have the capacity to extract electrical signals from individual brain cells and transmit the information to a prosthetic device or computer. Achieving this level of signal extraction or manipulation requires tiny sensors spaced very closely together for the highest resolution and signal acquisition. Enter the new electron beam writer.

Electron beam (e-beam) lithography enables researchers to write very small patterns on large substrates with a high level of precision. It is a widely used tool in information technology and life science. Applications range from writing patterns on silicon and compound semiconductor chips for electronic device and materials research to genome sequencing platforms. But the ability to write patterns on the scale afforded by the Nano3 facility -- with its minimum feature size of less than 8 nanometers on wafers with diameters that can be as large as 8 inches -- is unique in Southern California. Before the facility opened earlier this year, the closest comparable e-beam writer was in Los Angeles. In an e-beam writer, unique patterns are "written" on a silicon wafer coated with a polymer resist layer that is sensitive to electron irradiation. The machine directs a narrowly focused electron beam onto the surface marking the pattern, making parts of the resist coating insoluble and others soluble. The soluble area is later washed away, revealing the pattern which can have sub-10 nanometer feature dimensions.

Bioengineering professor Todd Coleman will use the new e-beam writer as one essential step in the building of his epidermal, or tattoo, electronic devices. The devices are designed to acquire brain signals for a variety of medical applications, from monitoring infants for seizures in neonatal intensive care to studying the cognitive impairment associated with Alzheimer's disease or dementia, and soldiers struggling with post-traumatic stress syndrome.

Electrical engineering Ph.D. candidate Andrew Grieco is using the machine to develop a new type of optical waveguide that promises to improve efficiency and reduce power consumption. Grieco works in the laboratory of Shaya Fainman, professor and chair, Department of Electrical and Computer Engineering. Developing on-chip optical networking devices such as waveguides, switches and amplifiers is a critical step in the development of optical chips. Although information systems rely primarily on fiber-optic networks to connect and share data around the world, the underlying computer technology is still based on ele ctronic chips, causing data traffic jams.

"Any local company that has an investment in nanoscale science and technology should greatly benefit from this machine. It's a powerful tool that is hard to find in a typical university setting or within local industry," said Dayeh (Ph.D., 2008 UC San Diego), who joined the faculty in 2012. "It's a unique tool that is being brought to San Diego."

Dayeh said technologies enabled by the e-beam writer will be important in local efforts to conduct research under President Obama's BRAIN Initiative, which will require developing much smaller sensing and stimulating elements with higher resolution on chips the size of a few millimeters. "Current state-of-the-art electro-neural interfacing technology enables sensing from hundreds or thousands of neurons. If you want to understand the neurophysiology on the individual cell basis then we need to develop sensors that have the spacing of a few tens of nanometers, which is about one-hundredth the size of a neuron and is on the same scale as their synaptic connections," he said.

Electron beam facility is open for business

UC San Diego's new Vistec Lithography EBPG5200 electron beam writer is available for use by campus researchers, as well as industry and research partners. The e-beam writer, used for nano and micro-fabrication is a new addition to the Qualcomm Institute's Nano3 facility, which provides a synergistic environment for fundamental research and development efforts at the nanoscale with a focus on nanoscience, nanoengineering and nanomedicine. In addition to providing essential nanofabrication capabilities for research on electronic and photonic materials and devices, Nano3 facilitates the pursuit of research in emerging, interdisciplinary and rapidly growing fields such as biomedical and biochemical devices, monolithic and heterogeneous integrated electronic and photonic devices and circuits, and sensor technology.

The new e-beam writer enables researchers to write fine features on a scale of less than 8 nanometers, over a large surface area up to 8 inches. The challenge of writing over large fields with electron beams is that the beam of electrons can become larger and diffused, distorting the features of the pattern. However, the EBPG5200 has superior electromagnetic focusing capability for extremely narrow electron beams over 1x1 mm2 write fields and a high stitching accuracy, which allows ultrascaled features to be written not only on research scale samples but also on commercial and production size wafers.

Adding the Vistec e-beam writer to Nano3 was enabled by funding from the Major Research Instrumentation program of the National Science Foundation, with contributions from UC San Diego, the Jacobs School of Engineering, the Department of Electrical and Computer Engineering, the UC San Diego School of Medicine, and Qualcomm Institute / Nano3.


Story Source:

The above story is based on materials provided by University of California, San Diego. The original article was written by Catherine Hockmuth. Note: Materials may be edited for content and length.


Cite This Page:

University of California, San Diego. "New electron beam writer enables next-gen biomedical and information technologies." ScienceDaily. ScienceDaily, 12 August 2013. <www.sciencedaily.com/releases/2013/08/130812203533.htm>.
University of California, San Diego. (2013, August 12). New electron beam writer enables next-gen biomedical and information technologies. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/08/130812203533.htm
University of California, San Diego. "New electron beam writer enables next-gen biomedical and information technologies." ScienceDaily. www.sciencedaily.com/releases/2013/08/130812203533.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins