Featured Research

from universities, journals, and other organizations

Brain scans could predict response to antipsychotic medication

Date:
August 14, 2013
Source:
King's College London
Summary:
Researchers have identified neuroimaging markers in the brain which could help predict whether people with psychosis respond to antipsychotic medications or not.

Researchers from King's College London and the University of Nottingham have identified neuroimaging markers in the brain which could help predict whether people with psychosis respond to antipsychotic medications or not.

In approximately half of young people experiencing their first episode of a psychosis (FEP), the symptoms do not improve considerably with the initial medication prescribed, increasing the risk of subsequent episodes and worse outcome. Identifying individuals at greatest risk of not responding to existing medications could help in the search for improved medications, and may eventually help clinicians personalize treatment plans.

In a study published today in JAMA Psychiatry, researchers used structural Magnetic Resonance Imaging (MRI) to scan the brains of 126 individuals -- 80 presenting with FEP, and 46 healthy controls. Participants had an MRI scan shortly after their FEP, and another assessment 12 weeks later, to establish whether symptoms had improved following the first treatment with antipsychotic medications.

The researchers examined a particular feature of the brain called "cortical gyrification" -- the extent of folding of the cerebral cortex and a marker of how it has developed. They found that the individuals who did not respond to treatment already had a significant reduction in gyrification across multiple brain regions, compared to patients who did respond and to individuals without psychosis. This reduced gyrification was particularly present in brain areas considered important in psychosis, such as the temporal and frontal lobes. Those who responded to treatment were virtually indistinguishable from the healthy controls.

The researchers also investigated whether the differences could be explained by the type of diagnosis of psychosis (eg. with or without affective symptoms, such as depression or elated mood). They found that reduced gyrification predicted non-response to treatment independently of the diagnosis.

Dr Paola Dazzan from King's College London's Institute of Psychiatry, and senior author of the paper, says: "Our study provides crucial evidence of a neuroimaging marker that, if validated, could be used early in psychosis to help identify those people less likely to respond to medications. It is possible that the alterations we observed are due to differences in the way the brain has developed early on in people who do not respond to medication compared to those who do."

She continues:"There have been few advances in developing novel anti-psychotic drugs over the past 50 years and we still face the same problems with a sub-group of people who do not respond to the drugs we currently use. We could envisage using a marker like this one to identify people who are least likely to respond to existing medications and focus our efforts on developing new medication specifically adapted to this group. In the longer term, if we were able to identify poor responders at the outset, we may be able to formulate personalized treatment plans for that individual patient."

Dr Lena Palaniyappan from the University of Nottingham adds: "All of us have complex and varying patterns of folding in our brains. For the first time we are showing that the measurement of these variations could potentially guide us in treating psychosis. It is possible that people with specific patterns of brain structure respond better to treatments other than antipsychotics that are currently in use. Clearly, the time is ripe for us to focus on utilising neuroimaging to guide treatment decisions."

Psychosis is a term used to indicate mental health disorders that present with symptoms like hallucinations (such as hearing voices) or delusions (unshakeable beliefs based on the person's altered perception of reality, which may not correspond to the way others see the world). Psychotic episodes are present in conditions such as schizophrenia and bipolar disorder.

Approximately 1 in 100 people in England have at least one episode of psychosis throughout their lives. In most cases, psychosis develops during late adolescence (15 or above) or adulthood. Treatment involves a combination of antipsychotic medication, psychological therapies and social support. Many people with psychosis go on to lead ordinary lives and for about 60% of people, the symptoms disappear within 12 months from onset. However, for others, treatment is less straightforward and many do not respond to the initial antipsychotic treatment prescribed by their doctor. Early response to antipsychotic medication is known to be associated with better outcome and fewer subsequent episodes, and intervening early with effective treatments is therefore important.


Story Source:

The above story is based on materials provided by King's College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lena Palaniyappan et al. Cortical Folding Defects as Markers of Poor Treatment Response in First-Episode Psychosis. JAMA Psychiatry, 2013 DOI: 10.1001/jamapsychiatry.2013.203

Cite This Page:

King's College London. "Brain scans could predict response to antipsychotic medication." ScienceDaily. ScienceDaily, 14 August 2013. <www.sciencedaily.com/releases/2013/08/130814191924.htm>.
King's College London. (2013, August 14). Brain scans could predict response to antipsychotic medication. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2013/08/130814191924.htm
King's College London. "Brain scans could predict response to antipsychotic medication." ScienceDaily. www.sciencedaily.com/releases/2013/08/130814191924.htm (accessed August 27, 2014).

Share This




More Mind & Brain News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com
Brain Surgery in 3-D

Brain Surgery in 3-D

Ivanhoe (Aug. 27, 2014) Neurosurgeons now have a new approach to brain surgery using the same 3D glasses you’d put on at an IMAX movie theater. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins