Featured Research

from universities, journals, and other organizations

Brain network decay detected in early Alzheimer's

Date:
August 19, 2013
Source:
Washington University in St. Louis
Summary:
In patients with early Alzheimer’s disease, disruptions in brain networks emerge about the same time as chemical markers of the disease appear in the spinal fluid, researchers have shown.

In patients with early Alzheimer's disease, disruptions in brain networks emerge about the same time as chemical markers of the disease appear in the spinal fluid, researchers at Washington University School of Medicine in St. Louis have shown.

Related Articles


While two chemical markers in the spinal fluid are regarded as reliable indicators of early disease, the new study, published in JAMA Neurology, is among the first to show that scans of brain networks may be an equally effective and less invasive way to detect early disease.

"Tracking damage to these brain networks may also help us formulate a more detailed understanding of what happens to the brain before the onset of dementia," said senior author Beau Ances, MD, PhD, associate professor of neurology and of biomedical engineering.

Diagnosing Alzheimer's early is a top priority for physicians, many of whom believe that treating patients long before dementia starts greatly improves the chances of success.

Ances and his colleagues studied 207 older but cognitively normal research volunteers at the Charles F. and Joanne Knight Alzheimer's Disease Research Center at Washington University. Over several years, spinal fluids from the volunteers were sampled multiple times and analyzed for two markers of early Alzheimer's: changes in amyloid beta, the principal ingredient of Alzheimer's brain plaques, and in tau protein, a structural component of nerve cells.

The volunteers were also scanned repeatedly using a technique called resting state functional magnetic resonance imaging (fMRI). This scan tracks the rise and fall of blood flow in different brain regions as patients rest in the scanner. Scientists use the resulting data to assess the integrity of the default mode network, a set of connections between different brain regions that becomes active when the mind is at rest.

Earlier studies by Ances and other researchers have shown that Alzheimer's damages connections in the default mode network and other brain networks.

The new study revealed that this damage became detectable at about the same time that amyloid beta levels began to rise and tau levels started to drop in spinal fluid. The part of the default mode network most harmed by the onset of Alzheimer's disease was the connection between two brain areas associated with memory, the posterior cingulate and medial temporal regions.

The researchers are continuing to study the connections between brain network damage and the progress of early Alzheimer's disease in normal volunteers and in patients in the early stages of Alzheimer's-associated dementia.


Story Source:

The above story is based on materials provided by Washington University in St. Louis. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wang L, Brier MR, Snyder AZ, Thomas JB, Fagan AM, Xiong C, Benzinger TL, Holtzman DM, Morris JC, Ances BM. Cerebrospinal fluid amyloid beta 42, phosphorylated tau, and resting state functional connectivity. JAMA Neurology, August 19, 2013

Cite This Page:

Washington University in St. Louis. "Brain network decay detected in early Alzheimer's." ScienceDaily. ScienceDaily, 19 August 2013. <www.sciencedaily.com/releases/2013/08/130819162513.htm>.
Washington University in St. Louis. (2013, August 19). Brain network decay detected in early Alzheimer's. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2013/08/130819162513.htm
Washington University in St. Louis. "Brain network decay detected in early Alzheimer's." ScienceDaily. www.sciencedaily.com/releases/2013/08/130819162513.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins