Featured Research

from universities, journals, and other organizations

Supervolcanic ash can turn to lava miles from eruption

Date:
August 27, 2013
Source:
University of Missouri-Columbia
Summary:
Scientists have determined that ash can turn back into lava miles away from a supervolcano eruption due to reheating by a process called "viscous heating."

Evidence of flowing lava hardened into rock found in Idaho several miles away from the site of an 8 million year old supervolcano eruption at Yellowstone.
Credit: Graham Andrews, assistant professor at California State University Bakersfield.

Supervolcanoes, such as the one sitting dormant under Yellowstone National Park, are capable of producing eruptions thousands of times more powerful than normal volcanic eruptions. While they only happen every several thousand years, these eruptions have the potential to kill millions of people and animals due to the massive amount of heat and ash they release into the atmosphere. Now, researchers at the University of Missouri have shown that the ash produced by supervolcanoes can be so hot that it has the ability to turn back into lava once it hits the ground tens of miles away from the original eruption.

Following a volcanic eruption, lava typically flows directly from the site of the eruption until it cools enough that it hardens in place. However, researchers found evidence of an ancient lava flow tens of miles away from a supervolcano eruption near Yellowstone that occurred around 8 million years ago. Previously, Graham Andrews, an assistant professor at California State University Bakersfield, found that this lava flow was made of ash ejected during the eruption. Following Andrew's discovery, Alan Whittington, an associate professor in the University of Missouri department of geological sciences in the College of Arts and Science, along with lead author Genevieve Robert and Jiyang Ye, both doctoral students in the geological sciences department, determined how this was possible.

"During a supervolcano eruption, pyroclastic flows, which are giant clouds of very hot ash and rock, travel away from the volcano at typically a hundred miles an hour," Robert said. "We determined the ash must have been exceptionally hot so that it could actually turn into lava and flow before it eventually cooled."

Because the ash should have cooled too much in the air to turn into lava right as it landed, the researchers believe the phenomenon was made possible by a process known as "viscous heating." Viscosity is the degree to which a liquid resists flow. The higher the viscosity, the less the substance can flow. For example, water has a very low viscosity, so it flows very easily, while molasses has a higher viscosity and flows much slower. Whittington likens the process of viscous heating to stirring a pot of molasses.

"It is very hard to stir a pot of molasses and you have to use a lot of energy and strength to move your spoon around the pot," Whittington said. "However, once you get the pot stirring, the energy you are using to move the spoon is transferred into the molasses, which actually heats up a little bit. This is viscous heating. So when you think about how fast the hot ash is traveling after a massive supervolcano eruption, once it hits the ground that energy is turned into heat, much like the energy from the spoon heating up the molasses. This extra heat created by viscous heating is enough to cause the ash to weld together and actually begin flowing as lava."

The volcanic ash from this eruption has to be at least 1,500 degrees Fahrenheit to turn into lava; however, since the ash should have lost some of that heat in the air, the researchers believe viscous heating accounted for 200 to 400 degrees Fahrenheit of additional heating to turn the ash into lava.

Robert, Andrews, Ye, and Whittington's paper was published in Geology. The National Science Foundation funded this research through a CAREER award to Whittington.


Story Source:

The above story is based on materials provided by University of Missouri-Columbia. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. Robert, G. D. M. Andrews, J. Ye, A. G. Whittington. Rheological controls on the emplacement of extremely high-grade ignimbrites. Geology, 2013; 41 (9): 1031 DOI: 10.1130/G34519.1

Cite This Page:

University of Missouri-Columbia. "Supervolcanic ash can turn to lava miles from eruption." ScienceDaily. ScienceDaily, 27 August 2013. <www.sciencedaily.com/releases/2013/08/130827122816.htm>.
University of Missouri-Columbia. (2013, August 27). Supervolcanic ash can turn to lava miles from eruption. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2013/08/130827122816.htm
University of Missouri-Columbia. "Supervolcanic ash can turn to lava miles from eruption." ScienceDaily. www.sciencedaily.com/releases/2013/08/130827122816.htm (accessed September 19, 2014).

Share This



More Earth & Climate News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Wildfires in CA Burn Forest Asunder

Raw: Wildfires in CA Burn Forest Asunder

AP (Sep. 18, 2014) An out-of-control Northern California wildfire has nearly 2,800 people from their homes as it continues to grow, authorities said Thursday. Authorities said a man has been arrested on suspicion of arson for starting the fire on Saturday. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins