Featured Research

from universities, journals, and other organizations

Mystery in blot clotting disorder solved

Date:
August 27, 2013
Source:
University of Texas Health Science Center at Houston
Summary:
Fifteen years ago, a hematologist came an expert with a puzzle: Multiple generations of an East Texas family suffered from a moderately severe bleeding disorder, but it wasn’t hemophilia.

Fifteen years ago, a hematologist came to Dianna Milewicz, M.D., Ph.D., with a puzzle: Multiple generations of an East Texas family suffered from a moderately severe bleeding disorder, but it wasn't hemophilia.

Related Articles


"No surgeon would do elective surgery because they bled too much after surgery," said Milewicz, professor and director of the Division of Medical Genetics at The University of Texas Health Science Center at Houston (UTHealth). "So we collected DNA and plasma from the family and were able to determine that a genetic variant in the Factor V gene was causing production of an abnormal form of the Factor V protein, which we called FV-Short. Factor V is a protein known to be important for the blood to clot."

But her team at the UTHealth Medical School couldn't pinpoint exactly how the variation was causing the clotting problem until they collaborated with Björn Dahlbӓck, M.D., Ph.D., from Lund University, Malmö, Sweden.

"Dr. Dahlbӓck is a world expert on Factor V and he was very excited about the research," said Milewicz, who holds the President George H.W. Bush Chair in Cardiovascular Research. She is also on the faculty of The University of Texas Graduate School of Biomedical Sciences and director of the John Ritter Research Program in Aortic and Vascular Diseases at UTHealth.

"I was indeed very excited when hearing about the puzzling results because the knowledge at the time on the role of FV in coagulation could not explain the bleeding disorder. It has been a great privilege to work with Dr. Milewicz and her colleagues to decode the unexpected and intriguing mechanisms on how FV-Short caused the bleeding disorder," said Dahlbäck who holds the chair as professor of Blood Coagulation Research at Lund University, Malmö, Sweden.

The results were published in today's online issue of the Journal of Clinical Investigation. Milewicz and Dahlbäck are senior co-authors.

Genes make proteins that do everything from giving cells shape and structure to helping carry out biological processes. To make the proteins, genes go through a process called alternative splicing that creates coded portions, called exons. The researchers discovered that a mutation in exon 13 of the coagulation FV gene caused a short form of the protein due to changes in the splicing of the exons. That FV-Short protein was unexpectedly found to form a complex in blood with tissue factor pathway inhibitor (TFPI), a protein that inhibits coagulation of the blood. An overabundance of the combined FV-Short/TFPI in the bloodstream keeps the blood from clotting in the affected family members. Other researchers have been looking at ways to inhibit TFPI, which could lead to a treatment for this family's clotting disorder.

What Milewicz called traditional genetics and "old-fashioned biochemistry" by lead co-author Lisa Vincent, Ph.D., led to the discovery of the FV-short protein in the blood of affected family members. Dahlbӓck's work determined how the FV-Short was causing the problems with clotting the blood. Milewicz said studying this family with a rare blood disorder has provided further insight into how the blood clots.

"We knew there was something wrong with these patients' FV, but proving it required discovering unique properties of FV in coagulation," Vincent said. "After many trials and tribulations, our true success is finally being able to provide an answer to the family about their medical issues."

Lead co-author for "Factor V A2440G Causes East Texas Bleeding Disorder Through Liaison with TFPIa" is Sinh Tran, Lund University. Other co-authors are Tracy Bensend, genetic counselor, UTHealth; and Ruzica Livaja, Lund University.

Funding for the study came from the Doris Duke Foundation, the National Center for Advancing Translational Sciences, part of the National Institutes of Health (UL1TR000371), the Swedish Research Council, the Heart-Lung Foundation and the Söderberg's Foundation. At the time of the work, Vincent was a Schissler Foundation Fellow and Milewicz was a Doris Duke Distinguished Clinical Scientist.


Story Source:

The above story is based on materials provided by University of Texas Health Science Center at Houston. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lisa M. Vincent, Sinh Tran, Ruzica Livaja, Tracy A. Bensend, Dianna M. Milewicz, Björn Dahlbäck. Coagulation factor VA2440G causes east Texas bleeding disorder via TFPIα. Journal of Clinical Investigation, 2013; DOI: 10.1172/JCI69091

Cite This Page:

University of Texas Health Science Center at Houston. "Mystery in blot clotting disorder solved." ScienceDaily. ScienceDaily, 27 August 2013. <www.sciencedaily.com/releases/2013/08/130827134748.htm>.
University of Texas Health Science Center at Houston. (2013, August 27). Mystery in blot clotting disorder solved. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2013/08/130827134748.htm
University of Texas Health Science Center at Houston. "Mystery in blot clotting disorder solved." ScienceDaily. www.sciencedaily.com/releases/2013/08/130827134748.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) — Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
Ebola: Life Without School in Guinea

Ebola: Life Without School in Guinea

AFP (Nov. 21, 2014) — Following the closure of schools and universities in Guinea because of the Ebola virus, students look for temporary work or gather in makeshift classrooms to catch up on their syllabus. Duration: 02:14 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins