Featured Research

from universities, journals, and other organizations

East Antarctic Ice Sheet could be more vulnerable to climate change than previously thought

Date:
August 28, 2013
Source:
Durham University
Summary:
The world's largest ice sheet could be more vulnerable to the effects of climate change than previously thought, according to new research.

Ice mass loss in East Antarctica was primarily in coastal regions (depicted in light blue) in 2009.
Credit: University of Texas at Austin Center for Space Research

The world's largest ice sheet could be more vulnerable to the effects of climate change than previously thought, according to new research from Durham University.

Related Articles


A team from the Department of Geography used declassified spy satellite imagery to create the first long-term record of changes in the terminus of outlet glaciers -- where they meet the sea -- along 5,400km of the East Antarctic Ice Sheet's coastline. The imagery covered almost half a century from 1963 to 2012.

Using measurements from 175 glaciers, the researchers were able to show that the glaciers underwent rapid and synchronised periods of advance and retreat which coincided with cooling and warming.

The researchers said this suggested that large parts of the ice sheet, which reaches thicknesses of more than 4km, could be more susceptible to changes in air temperatures and sea-ice than was originally believed.

Current scientific opinion suggests that glaciers in East Antarctica are at less risk from climate change than areas such as Greenland or West Antarctica due to its extremely cold temperatures which can fall below minus 30C at the coast, and much colder further inland.

But the Durham team said there was now an urgent need to understand the vulnerability of the East Antarctic Ice Sheet, which holds the vast majority of the world's ice and enough to raise global sea levels by over 50m.

Dr Chris Stokes, in Durham's Department of Geography, said: "We know that these large glaciers undergo cycles of advance and retreat that are triggered by large icebergs breaking off at the terminus, but this can happen independently from climate change.

"It was a big surprise therefore to see rapid and synchronous changes in advance and retreat, but it made perfect sense when we looked at the climate and sea-ice data.

"When it was warm and the sea-ice decreased, most glaciers retreated, but when it was cooler and the sea ice increased, the glaciers advanced.

"In many ways, these measurements of terminus change are like canaries in a mine -- they don't give us all the information we would like, but they are worth taking notice of."

The researchers found that despite large fluctuations in terminus positions between glaciers -- linked to their size -- three significant patterns emerged:

  • In the 1970s and 80s, temperatures were rising and most glaciers retreated;
  • During the 1990s, temperatures decreased and most glaciers advanced;
  • And the 2000s saw temperatures increase and then decrease, leading to a more even mix of retreat and advance.

Trends in temperature and glacier change were statistically significant along the East Antarctic Ice Sheet's warmer Pacific Coast, but no significant changes were found along the much cooler Ross Sea Coast, which might be expected if climate is driving the changes, the Durham researchers said.

Dr Stokes said that the cause of the recent trends in air temperature and sea ice were difficult to unravel but were likely to reflect a combination of both natural variability and human impacts.

However, he added that the changes observed in glaciers in East Antarctica needed further investigation against the backdrop of likely increases in both atmospheric and ocean temperatures caused by climate change.

Dr Stokes said: "If the climate is going to warm in the future, our study shows that large parts of the margins of the East Antarctic Ice Sheet are vulnerable to the kinds of changes that are worrying us in Greenland and West Antarctica -- acceleration, thinning and retreat.

"When temperatures warm in the air or ocean, glaciers respond by retreating and this can have knock-on effects further inland, where more and more ice is drawn-down towards the coast.

"We need to monitor their behaviour more closely and maybe reassess our rather conservative predictions of future ice sheet dynamics in East Antarctica."


Story Source:

The above story is based on materials provided by Durham University. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. W. J. Miles, C. R. Stokes, A. Vieli, N. J. Cox. Rapid, climate-driven changes in outlet glaciers on the Pacific coast of East Antarctica. Nature, 2013; 500 (7464): 563 DOI: 10.1038/nature12382

Cite This Page:

Durham University. "East Antarctic Ice Sheet could be more vulnerable to climate change than previously thought." ScienceDaily. ScienceDaily, 28 August 2013. <www.sciencedaily.com/releases/2013/08/130828131936.htm>.
Durham University. (2013, August 28). East Antarctic Ice Sheet could be more vulnerable to climate change than previously thought. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2013/08/130828131936.htm
Durham University. "East Antarctic Ice Sheet could be more vulnerable to climate change than previously thought." ScienceDaily. www.sciencedaily.com/releases/2013/08/130828131936.htm (accessed October 26, 2014).

Share This



More Earth & Climate News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins