Featured Research

from universities, journals, and other organizations

Making cars that are lightweight and crash-safe

Date:
September 4, 2013
Source:
Fraunhofer-Gesellschaft
Summary:
The auto industry needs to have a rethink: having turned out ever heavier cars year on year, in future vehicles will have to be lighter with lower fuel consumption and CO2 emissions. If auto makers do not dramatically reduce the average CO2 emissions of their cars, they will face hefty fines. That was determined by the European Commission in a new piece of legislation.

This crash test is designed to establish how much a sample component deforms under a defined bending stress.
Credit: © Fraunhofer IWS

The auto industry needs to have a rethink: having turned out ever heavier cars year on year, in future vehicles will have to be lighter with lower fuel consumption and CO2 emissions. If auto makers do not dramatically reduce the average CO2 emissions of their cars, they will face hefty fines. That was determined by the European Commission in a new piece of legislation. One way to achieve a major cut in fuel consumption is through lightweight construction – in other words, cars have to slim down. But this must not jeopardize the safety of vehicle occupants – and that is a big challenge for auto designers, who are faced with the task of fulfilling these contrasting requirements.

Vehicle bodies until now have consisted largely of a homogenous sheet steel structure with constant component sheet thicknesses. Components that are subject to particularly strong local stresses are often oversized, because the wall strength has to be designed to withstand the highest local stress point. This means that the sheet thickness is greater than needed in areas that are subject to less stress, making components unnecessarily heavy. Moreover, automakers use lots of expensive, high-strength steel sheets. At present, then, compromises are constantly being made between component weight, component cost, and crash safety.

Now researchers at the Fraunhofer Institute for Material and Beam Technology IWS in Dresden have developed a lightweight construction technology that makes it possible to reduce vehicle weight while ensuring adequate crash safety. “Safety and lightweight construction need not contradict each other,” says Markus Wagner, a scientist at the IWS. In order to match the characteristics of body components more precisely to the stresses that act on them, the engineer and his colleagues are pursuing an exciting new approach called “local laser reinforcement”. This approach involves using low-cost, low-strength steel sheets with minimized wall thickness and reinforcing them locally only in those areas that are subject to strong stresses. To do this, the experts guide a focused laser beam over the surface of the unprocessed sheet. The zones treated in this way heat up or even begin to melt, before solidifying again. The heat dissipates quickly into the adjacent cold material, causing the track to cool down rapidly. This produces hard phases and the material is significantly strengthened. “We obtain strengths of up to 1,500 MPa (megapascals). That’s roughly twice the strength of the unreinforced basic material,” says Wagner. “This enables us to optimize the weights and stresses above all in the design of the front and rear bumper beams, the B-pillar, and various stiffeners.”

Components that bend only half as much

Crash stresses create complex high-speed deformations in components. By means of local laser reinforcement, scientists are striving to obtain greater resistance to deformation. The less the car body part bends, the greater protection the driver has. At the same time, failure behavior can be influenced by predetermining the position of the first plastic deformation. For this to work, the researchers have to determine the optimum position and geometry of the reinforcement tracks. Should the tracks be pointed? Slanted? Should they run lengthwise? What should the material’s composition be to optimize how difficult it is to deform the reinforcement zone? The researchers can find the answers to all these questions via simulation tests on the computer. “With our simulations, we are able to model field tests. The results obtained from trials and simulations deviate just a few millimeters from each other,” says Wagner.

With the aid of numerical simulation, the scientist and his team have developed a crash-optimized track design for bending stress such as might arise when a car collides head-on with a tree or is hit by another car from the side. The track design was transferred onto real components using a laser. “We managed to halve the deflection of a locally laser reinforced pipe profile compared to the reference part, even though we locally reinforced only three percent of the component volume. In other words, we doubled its crash performance,” explains Wagner.

The IWS researchers have already applied the method to various crash profiles and seat components on behalf of customers. Thanks to the new, stress-specific design, they are able to significantly reduce wall strengths and thereby make components up to 20 percent lighter, all without neglecting crash safety. As the next stage, Wagner and his colleagues want to perfect their technology by means of an automated optimization of track geometry.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Making cars that are lightweight and crash-safe." ScienceDaily. ScienceDaily, 4 September 2013. <www.sciencedaily.com/releases/2013/09/130904093306.htm>.
Fraunhofer-Gesellschaft. (2013, September 4). Making cars that are lightweight and crash-safe. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/09/130904093306.htm
Fraunhofer-Gesellschaft. "Making cars that are lightweight and crash-safe." ScienceDaily. www.sciencedaily.com/releases/2013/09/130904093306.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins