Featured Research

from universities, journals, and other organizations

Looking inside vessels to understand blood's ebb and flow

Date:
September 4, 2013
Source:
Drexel University
Summary:
Biomedical engineers are developing an advanced mathematical modeling of how nitric oxide -- the chemical that regulates blood flow -- is produced in the body.

Researchers have known for some time that the blood vessels that transport blood to and from tissues and organs in the body are more than just bodily pipelines. Arterioles and capillaries, the small vessels, actually play a key role in regulating the flow of the blood they're carrying. Biomedical engineers at Drexel University, who study cardiovascular function, are creating a mathematical model that explains just how they do it.

The team, which includes Drs. Dov Jaron, Kenneth Barbee and Donald Buerk from Drexel's School of Biomedical Engineering, Science and Health Systems, will look specifically at mechanisms that govern the production of nitric oxide in the circulatory system. Nitric oxide is a chemical produced by endothelial cells that line the inner walls of blood vessels, which regulates blood pressure and flow by dilating the vessels. It also plays a role in the immune system's response to injuries and infections.

"This research is significant since the mechanisms that control the production of nitric oxide, and thereby control blood flow, are not fully known," Jaron said. "NIH is making it a priority to study this, since defects in nitric oxide in blood and tissues are known to lead to many diseases."

The National Heart, Lung and Blood Institute of The National Institutes of Health has pledged more than $3.3 million over five years to the Drexel team in hopes that its model could eventually play a role in combating one of the nation's leading killers: heart disease.

"This team is uniquely qualified to perform this research because it combines expertise in mathematical modeling and experiments," Barbee said. "We have identified novel mechanisms involved in the regulation of nitric oxide production that are not apparent using standard experimental approaches alone."

Using a flow chamber, invented at Drexel specifically for this type of research, the team will examine nitric oxide production in endothelial cells grown in the lab. While introducing chemical catalysts and inhibitors the team will be able to track -in real time- how nitric oxide is produced. Adding this data on location and time factors involved in the production of nitric oxide will give Drexel's model another layer of depth and accuracy.

"In addition to the flow chamber technology, we also have the unique capability for using sensitive microelectrodes to measure nitric oxide in the microcirculation," Buerk said.

One thing that scientists already know about nitric oxide in the body is that the presence of high levels of cholesterol can block its production and thus contribute to the development of vascular disease. Drexel's model, which will be open-source, could help researchers in the field gain greater understanding of vascular function and test hypotheses about the biological pathways leading to the production of nitric oxide.


Story Source:

The above story is based on materials provided by Drexel University. Note: Materials may be edited for content and length.


Cite This Page:

Drexel University. "Looking inside vessels to understand blood's ebb and flow." ScienceDaily. ScienceDaily, 4 September 2013. <www.sciencedaily.com/releases/2013/09/130904132500.htm>.
Drexel University. (2013, September 4). Looking inside vessels to understand blood's ebb and flow. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2013/09/130904132500.htm
Drexel University. "Looking inside vessels to understand blood's ebb and flow." ScienceDaily. www.sciencedaily.com/releases/2013/09/130904132500.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Predicting Heart Transplant Rejection With a Blood Test

Predicting Heart Transplant Rejection With a Blood Test

Ivanhoe (Aug. 27, 2014) Now a new approach to rejection of donor organs could change the way doctors predict transplant rejection…without expensive, invasive procedures. Video provided by Ivanhoe
Powered by NewsLook.com
Better Braces That Vibrate

Better Braces That Vibrate

Ivanhoe (Aug. 27, 2014) The length of time you have to keep your braces on could be cut in half thanks to a new device that speeds up the process. Video provided by Ivanhoe
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins