Featured Research

from universities, journals, and other organizations

No evidence of planetary influence on solar activity

Date:
September 5, 2013
Source:
Astronomy & Astrophysics
Summary:
In 2012, Astronomy & Astrophysics published a statistical study of the isotopic records of solar activity, in which scientists claimed that there is evidence of planetary influence on solar activity. A&A is publishing a new analysis of these isotopic data. It corrects technical errors in the statistical tests performed earlier. They find no evidence of any planetary effect on solar activity.

Dark sunspots at the visible solar surface. Harbouring strong magnetic fields, their coming and going reflects the variations of solar magnetic activity.
Credit: Image taken with the Swedish Solar Telescope at the Roque de los Muchachos Observatory (La Palma, Spain).

In 2012, Astronomy & Astrophysics published a statistical study of the isotopic records of solar activity, in which Abreu et al. claimed that there is evidence of planetary influence on solar activity. A&A is publishing a new analysis of these isotopic data by Cameron and Schüssler. It corrects technical errors in the statistical tests performed by Abreu et al. They find no evidence of any planetary effect on solar activity.

The Sun is a magnetically active star. Its activity manifests itself as dark sunspots and bright faculae on its visible surface, as well as violent mass ejections and the acceleration of high-energy particles resulting from the release of magnetic energy in its outer atmosphere. The frequency with which these phenomena occur varies in a somewhat irregular activity cycle of about 11 years, during which the global magnetic field of the Sun reverses. The solar magnetic field and the activity cycle originate in a self-excited dynamo mechanism based upon convective flows and rotation in the outer third of the solar radius.

Systematic observations of sunspots since the beginning of the 17th century indicate that solar activity also varies on longer timescales, including periods of very low activity, such as the so-called Maunder minimum between 1640 and 1700. Analysis of radioactive isotopes in tree rings and in polar ice sheets show that other such grand minima of solar activity have occurred over the past millenium, and also revealed a number of quasi-periods in the activity variations, ranging from 80 to about 2000 years.

Before the magnetic nature of sunspots and other phenomena were discovered, a popular theory associated the activity cycle with the planetary orbital periods, primarily motivated by the similarity between the approximately 11-yr solar cycle and the 11.87 orbital period of Jupiter. In principle, the planets can affect the Sun by exerting tides (similar to terrestrial ocean tides caused by the moon), but these effects are extremely tiny (tide heights of a few millimeters, at most) in comparison to all other dynamical forces. Furthermore, detailed statistical analyses have time and again shown that apparent similarities between some planetary periods and solar activity variations were consistent with chance and were statistically insignificant.

With a new reconstructed record of solar activity, inferred from the radioactive isotopes of beryllium and carbon in ice cores covering the past 9400 years, Abreu et al. (2012, A&A, 548, A88) have recently revisited this issue. They compared the quasi-periods found in this data set between 40 and 600 years with periods in the tidal torque exerted on a thin shell in the solar interior, which they assumed to be ellipsoidally deformed. Abreu et al. found seemingly striking similarities between the solar and the planetary periods in 5 period bands. Their statistical analysis appeared to show that these coincidences are not due to chance, which would mean that the planets affect solar activity after all.

In a new paper published in A&A, R. Cameron and M. Schüssler, however, identify subtle technical errors in the statistical tests performed by Abreu et al. Correcting these errors reduces the statistical significance by many orders of magnitude to values consistent with a pure chance coincidence. The quasi-periods in the isotope data therefore provide no evidence that there is any planetary effect on solar activity.


Story Source:

The above story is based on materials provided by Astronomy & Astrophysics. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. H. Cameron, M. Schüssler. No evidence for planetary influence on solar activity. Astronomy & Astrophysics, 2013; 557: A83 DOI: 10.1051/0004-6361/201321713

Cite This Page:

Astronomy & Astrophysics. "No evidence of planetary influence on solar activity." ScienceDaily. ScienceDaily, 5 September 2013. <www.sciencedaily.com/releases/2013/09/130905101908.htm>.
Astronomy & Astrophysics. (2013, September 5). No evidence of planetary influence on solar activity. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2013/09/130905101908.htm
Astronomy & Astrophysics. "No evidence of planetary influence on solar activity." ScienceDaily. www.sciencedaily.com/releases/2013/09/130905101908.htm (accessed October 20, 2014).

Share This



More Space & Time News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com
Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) — Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) — Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com
Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Newsy (Oct. 17, 2014) — The smallest of Saturn's main moons, Mimas, wobbles as it orbits. Research reveals it might be due to a global ocean underneath its icy surface. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins