Featured Research

from universities, journals, and other organizations

Ultra-thin saw wire made of carbon for precision work

Date:
September 9, 2013
Source:
Fraunhofer-Gesellschaft
Summary:
You can’t saw without producing sawdust – and that can be expensive if, for example, the “dust” comes from wafer manufacturing in the photovoltaic and semiconductor industries, where relatively high kerf loss has been accepted as an unavoidable, if highly regrettable, fact of life. But now scientists have developed a saw wire that is set to effect dramatic reductions in kerf loss: in place of diamond-impregnated steel wires, the researchers use ultra-thin and extremely stable threads made of carbon nanotubes coated with diamond.

New ultra-thin saw wire for cutting silicon wafers: diamond on top of carbon nanotubes.
Credit: Fraunhofer IWM

You can't saw without producing sawdust -- and that can be expensive if, for example, the "dust" comes from wafer manufacturing in the photovoltaic and semiconductor industries, where relatively high kerf loss has been accepted as an unavoidable, if highly regrettable, fact of life. But now scientists from the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg together with colleagues from the Australian Commonwealth Scientific and Industrial Research Organisation CSIRO have developed a saw wire that is set to effect dramatic reductions in kerf loss: in place of diamond-impregnated steel wires, the researchers use ultra-thin and extremely stable threads made of carbon nanotubes coated with diamond.

The potential of coated carbon nanotubes has long been understood: possible applications include its use as a hard and tough composite material or as a component of highly sensitive sensors and thermoelectric generators. However, the new material is extremely difficult to synthesize. Diamonds only grow under extreme conditions -- at temperatures of around 900 degrees Celsius in an atmosphere containing hydrocarbons. Growing diamonds on nanotubes is a tricky proposition, because carbon tends to form graphite. In order to catalyse the formation of the diamond phase, it's necessary to use reactive hydrogen to prohibit the deposition of graphite. However, this process also damages the carbon nanotubes.

But the IWM scientist Manuel Mee found a solution for protecting the fine carbon nanotubes, which grow like forests on a substrate: "During our first experiments, fused silica from the reaction chamber accidentally came into contact with the coating plasma. It settled on the substrate and protected it against the aggressive hydrogen." And to his surprise, diamonds actually grew on this layer. "What followed was careful, painstaking work," points out Mee. "We had to study the silicon oxide layer, which was deposited in an undefined manner, and find a method of controlling the deposition and optimizing the process." Tests with a transmission electron microscope at CSIRO's lab in Australia revealed that the nanotubes actually survived under their protective layer.

A German-Australian success story

How exactly to proceed from there was the question that now faced the scientists. If they found a way to coat with diamond the nanothreads that the CSIRO specialists make from nanotubes, these diamond-coated nanothreads could be used to manufacture ultra-thin saws capable of cutting through silicon wafers for instance. The Australian team at CSIRO is one of the principal global experts with the know-how to manufacture yarns from carbon nanotubes. The manufacturing process requires special carbon nanotube "forests," which can be extracted as an ultra-thin "felt" and twisted into a very thin yarn ten to twenty micrometers in diameter. In principle, this diamond-coated yarn is the ideal material on which to base a new generation of saws, which could be used in the solar industry for example. As Mee explains: "The new saw wires held out the promise of being far superior to traditional steel wires. Because of their high tensile strength, they can be manufactured much thinner than steel wires -- and that means significantly less kerf loss."

In the meantime, the physicist has managed to implement his idea. A joint patent application by Fraunhofer and CSIRO has already been filed for the method and corresponding products. Mee and his colleagues are currently carrying out sawing tests. "To be able to show our partners in industry the potential the technology holds," says Mee, "we have to demonstrate how it can help solar companies to save material when processing wafers."


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Ultra-thin saw wire made of carbon for precision work." ScienceDaily. ScienceDaily, 9 September 2013. <www.sciencedaily.com/releases/2013/09/130909092831.htm>.
Fraunhofer-Gesellschaft. (2013, September 9). Ultra-thin saw wire made of carbon for precision work. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2013/09/130909092831.htm
Fraunhofer-Gesellschaft. "Ultra-thin saw wire made of carbon for precision work." ScienceDaily. www.sciencedaily.com/releases/2013/09/130909092831.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins