Featured Research

from universities, journals, and other organizations

Motorized microscopic matchsticks move in water with sense of direction

Date:
September 10, 2013
Source:
University of Warwick
Summary:
Chemists, physicists and computer scientists have come together to devise a new powerful and very versatile way of controlling the speed and direction of motion of microscopic structures in water using what they have dubbed chemically 'motorized microscopic matchsticks'.

Chemists, physicists and computer scientists at the University of Warwick have come together to devise a new powerful and very versatile way of controlling the speed and direction of motion of microscopic structures in water using what they have dubbed chemically ‘motorised microscopic matchsticks’.
Credit: Image courtesy of University of Warwick

Chemists, physicists and computer scientists at the University of Warwick have come together to devise a new powerful and very versatile way of controlling the speed and direction of motion of microscopic structures in water using what they have dubbed chemically 'motorised microscopic matchsticks'.

Related Articles


Before now most research seeking to influence the direction of motion of microscopic components have had to use outside influences such as a magnetic field or the application of light. The University of Warwick team have now found a way to do it by simply adding a chemical in a specific spot and then watching the microscopic matchstick particles move towards it, a phenomenon known as chemotaxis.

The research published in the journal Materials Horizons (RSC) in a paper entitled "Chemotaxis of catalytic silica-manganese oxide "matchstick" particles" found that by adding a small amount of a catalyst to the head of a set microscopic rods, they could then cause the rods to be propelled towards the location of an appropriate 'chemical fuel' that was then added to a mixture.

For the purposes of this experiment the researchers placed silica-manganese oxide 'heads' on the matchstick material and introduced hydrogen peroxide as the chemical fuel in one particular place.

They placed the 'matchsticks' in a mixture alongside ordinary polymer microspheres.

When the hydrogen peroxide was added the microspheres continued to move in the direction of convection currents or under Brownian motion but the matchsticks were clearly rapidly propelled towards the chemical gradient where the hydrogen peroxide could be found.

The reaction was so strong that more than half of the matchstick particles did not reverse their orientation once over their 90 seconds of travel towards the hydrogen peroxide -- even though they were contending with significant convection and Brownian rotation.

University of Warwick research chemical engineer Dr Stefan Bon who led the research said:

"We choose high aspect ratio rod-like particles as they are a favourable geometry for chemotactic swimmers, as seen for example in nature in the shapes of certain motile organisms"

"We placed the 'engine' that drives the self-propulsion as a matchstick head on the rods because having the engine in the 'head' of the rod helps us align the rod along the direction of travel, would also show the asymmetry perpendicular to the direction of self-propulsion, and at the same time it maintains rotational symmetry parallel to the plane of motion.

"Our approach is very versatile and should allow for future fabrication of micro-components of added complexity.

"The ability to direct motion of these colloidal structures can form a platform for advances in supracolloidal science, the self-assembly of small objects.

"It may even provide some insight into how rod shapes were selected for self-propelled microscopic shapes in the natural world."


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Journal Reference:

  1. Adam R. Morgan, Alan B. Dawson, Holly S. Mckenzie, Thomas S. Skelhon, Richard Beanland, Henry P. W. Franks and Stefan A. F. Bon. Chemotaxis of catalytic silica–manganese oxide “matchstick” particles. Mater. Horiz., (in press) 2014 DOI: 10.1039/C3MH00003F

Cite This Page:

University of Warwick. "Motorized microscopic matchsticks move in water with sense of direction." ScienceDaily. ScienceDaily, 10 September 2013. <www.sciencedaily.com/releases/2013/09/130910094937.htm>.
University of Warwick. (2013, September 10). Motorized microscopic matchsticks move in water with sense of direction. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2013/09/130910094937.htm
University of Warwick. "Motorized microscopic matchsticks move in water with sense of direction." ScienceDaily. www.sciencedaily.com/releases/2013/09/130910094937.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dutch Architects Show Off 3D House-Building Prowess

Dutch Architects Show Off 3D House-Building Prowess

Reuters - Innovations Video Online (Mar. 31, 2015) Dutch architects are constructing a 3D-printed canal-side home, which they hope will spark an environmental revolution in the house-building industry. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Solar Plane Stops in China

Solar Plane Stops in China

Reuters - News Video Online (Mar. 31, 2015) Solar Impulse 2 stops over in China&apos;s Chonqing, completing the fifth leg in its bid to become the first solar powered plane to travel around the globe. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Bionic Ants Could Be Tomorrow's Factory Workers

Bionic Ants Could Be Tomorrow's Factory Workers

Reuters - Innovations Video Online (Mar. 30, 2015) Industrious 3D printed bionic ants working together could toil in the factories of the future, says German technology company Festo. The robotic insects cooperate and coordinate their actions and movements to achieve a common aim. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com
You Won't Be Driving Tesla's Mystery Product

You Won't Be Driving Tesla's Mystery Product

Newsy (Mar. 30, 2015) Tesla CEO Elon Musk announced a new product line will debut April 30, but it&apos;s not a car. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins