Featured Research

from universities, journals, and other organizations

Shared mechanisms in fragile X syndrome, autism and schizophrenia at neuronal synapses

Date:
September 18, 2013
Source:
VIB
Summary:
Several psychiatric conditions such as schizophrenia, autism and intellectual disabilities share the same brain cell abnormalities: the contacts (synapses) between brain cells are poorly developed and not functional. Researchers have unraveled how a single protein orchestrates two biological processes to form proper contacts between brain cells. Importantly, the researchers identified various proteins that are important for the balance of the two processes and associated with several neurological disorders.

Several psychiatric conditions such as schizophrenia, autism and intellectual disabilities share the same brain cell abnormalities: the contacts (synapses) between brain cells are poorly developed and not functional. Claudia Bagni and her group associated with the VIB, KU Leuven, and Tor Vergata University in Italy, in collaboration with leading laboratories in the Netherlands, France, USA and UK have unraveled how a single protein (CYFIP1) orchestrates two biological processes to form proper contacts between brain cells. Importantly, the researchers identified various proteins that are important for the balance of the two processes and associated with several neurological disorders. Their study is published in the leading journals Neuron.

Related Articles


Claudia Bagni (VIB/KU Leuven/Tor Vergata-Rome): "These findings provide insights into the shaping of our brain and have important consequences for further studies of conditions such as autism, schizophrenia and intellectual disabilities. This work has a substantial impact considering that 1 in 5 Europeans is confronted with one of these brain conditions ranging from mild to serious developmental disabilities.

Synapses are essential for communication between brain cells Our brain contain more than 100 billion brain cells (neurons) that contact each other in the so-called synapses, the place where signals are passed from one cell to the other. Synapses are like small "relay stations" containing around 2000 proteins that need to be regulated in a very controlled manner. Any small dysfunction of this cellular area can result in a brain disease. Autism, schizophrenia and intellectual disabilities (Down Syndrome, Fragile X Syndrome, Alzheimer Disease) are only a few examples of brain conditions that are linked to poorly functioning synapses.

The Fragile X Syndrome Claudia Bagni and her team have pioneered the molecular studies on the Fragile X Syndrome, the leading cause of inherited intellectual disability. Patients often show autistic-like behavior, anxiety, aggression, hyperactivity and self-injurious behavior. The condition is caused by the absence of the Fragile X Mental Retardation protein (FMRP) that is involved in supplying the correct building blocks for the synapse. Claudia Bagni's team had previously demonstrated that FMRP forms a complex with CYFIP1 to regulate this supply.

Shaping our synapses Bagni's group has now identified a key function of CYFP1 at synapses. CYFIP1 orchestrates two biological processes: together with FMRP, it acts to regulate the protein supply at synapses and when bound to another complex (WRC), controls actin polymerization, a scaffold of brain cells. These findings lead to the "hub" model, in which the same complex, having CYFIP1 at the center, might be affected in apparently different diseases. A disrupted balance between the two functions results in abnormal contacts between brain cells. Silvia De Rubeis, Emanuela Pasciuto and Claudia Bagni (VIB/KU Leuven/Tor Vergata-Rome) have exposed the molecular mechanisms that ensure that this balance is maintained.

The important function of CYFP1 was underlined further by the discovery that many proteins that interact with CYFP1 were already associated with (hereditary forms of) brain conditions. The VIB scientists suggest that mutations in the proteins working together with CYFIP1 might perturb the balance of the interaction networks thereby triggering a spectrum of pathological processes at synapses that can lead to a broad range of clinical manifestations such as intellectual disabilities, autism and schizophrenia. This study offers new perspectives for a better understanding of these still not understood brain conditions.


Story Source:

The above story is based on materials provided by VIB. Note: Materials may be edited for content and length.


Journal Reference:

  1. Silvia De Rubeis, Emanuela Pasciuto, Ka Wan Li, Esperanza Fernández, Daniele Di Marino, Andrea Buzzi, Linnaea E. Ostroff, Eric Klann, Fried J.T. Zwartkruis, Noboru H. Komiyama, Seth G.N. Grant, Christel Poujol, Daniel Choquet, Tilmann Achsel, Danielle Posthuma, August B. Smit, Claudia Bagni. CYFIP1 Coordinates mRNA Translation and Cytoskeleton Remodeling to Ensure Proper Dendritic Spine Formation. Neuron, 2013; 79 (6): 1169 DOI: 10.1016/j.neuron.2013.06.039

Cite This Page:

VIB. "Shared mechanisms in fragile X syndrome, autism and schizophrenia at neuronal synapses." ScienceDaily. ScienceDaily, 18 September 2013. <www.sciencedaily.com/releases/2013/09/130918132419.htm>.
VIB. (2013, September 18). Shared mechanisms in fragile X syndrome, autism and schizophrenia at neuronal synapses. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2013/09/130918132419.htm
VIB. "Shared mechanisms in fragile X syndrome, autism and schizophrenia at neuronal synapses." ScienceDaily. www.sciencedaily.com/releases/2013/09/130918132419.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) — More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Weird Things Couples Do When They Lose Their Phone

Weird Things Couples Do When They Lose Their Phone

BuzzFeed (Jan. 24, 2015) — Did you back it up? Do you even know how to do that? Video provided by BuzzFeed
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Amazing Technology Allows Blind Mother to See Her Newborn Son

Amazing Technology Allows Blind Mother to See Her Newborn Son

RightThisMinute (Jan. 23, 2015) — Not only is Kathy seeing her newborn son for the first time, but this is actually the first time she has ever seen a baby. Kathy and her sister, Yvonne, have been legally blind since childhood, but thanks to an amazing new technology, eSight glasses, which gives those who are legally blind the ability to see, she got the chance to see the birth of her son. It&apos;s an incredible moment and an even better story. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins