Featured Research

from universities, journals, and other organizations

Shared mechanisms in fragile X syndrome, autism and schizophrenia at neuronal synapses

Date:
September 18, 2013
Source:
VIB
Summary:
Several psychiatric conditions such as schizophrenia, autism and intellectual disabilities share the same brain cell abnormalities: the contacts (synapses) between brain cells are poorly developed and not functional. Researchers have unraveled how a single protein orchestrates two biological processes to form proper contacts between brain cells. Importantly, the researchers identified various proteins that are important for the balance of the two processes and associated with several neurological disorders.

Several psychiatric conditions such as schizophrenia, autism and intellectual disabilities share the same brain cell abnormalities: the contacts (synapses) between brain cells are poorly developed and not functional. Claudia Bagni and her group associated with the VIB, KU Leuven, and Tor Vergata University in Italy, in collaboration with leading laboratories in the Netherlands, France, USA and UK have unraveled how a single protein (CYFIP1) orchestrates two biological processes to form proper contacts between brain cells. Importantly, the researchers identified various proteins that are important for the balance of the two processes and associated with several neurological disorders. Their study is published in the leading journals Neuron.

Claudia Bagni (VIB/KU Leuven/Tor Vergata-Rome): "These findings provide insights into the shaping of our brain and have important consequences for further studies of conditions such as autism, schizophrenia and intellectual disabilities. This work has a substantial impact considering that 1 in 5 Europeans is confronted with one of these brain conditions ranging from mild to serious developmental disabilities.

Synapses are essential for communication between brain cells Our brain contain more than 100 billion brain cells (neurons) that contact each other in the so-called synapses, the place where signals are passed from one cell to the other. Synapses are like small "relay stations" containing around 2000 proteins that need to be regulated in a very controlled manner. Any small dysfunction of this cellular area can result in a brain disease. Autism, schizophrenia and intellectual disabilities (Down Syndrome, Fragile X Syndrome, Alzheimer Disease) are only a few examples of brain conditions that are linked to poorly functioning synapses.

The Fragile X Syndrome Claudia Bagni and her team have pioneered the molecular studies on the Fragile X Syndrome, the leading cause of inherited intellectual disability. Patients often show autistic-like behavior, anxiety, aggression, hyperactivity and self-injurious behavior. The condition is caused by the absence of the Fragile X Mental Retardation protein (FMRP) that is involved in supplying the correct building blocks for the synapse. Claudia Bagni's team had previously demonstrated that FMRP forms a complex with CYFIP1 to regulate this supply.

Shaping our synapses Bagni's group has now identified a key function of CYFP1 at synapses. CYFIP1 orchestrates two biological processes: together with FMRP, it acts to regulate the protein supply at synapses and when bound to another complex (WRC), controls actin polymerization, a scaffold of brain cells. These findings lead to the "hub" model, in which the same complex, having CYFIP1 at the center, might be affected in apparently different diseases. A disrupted balance between the two functions results in abnormal contacts between brain cells. Silvia De Rubeis, Emanuela Pasciuto and Claudia Bagni (VIB/KU Leuven/Tor Vergata-Rome) have exposed the molecular mechanisms that ensure that this balance is maintained.

The important function of CYFP1 was underlined further by the discovery that many proteins that interact with CYFP1 were already associated with (hereditary forms of) brain conditions. The VIB scientists suggest that mutations in the proteins working together with CYFIP1 might perturb the balance of the interaction networks thereby triggering a spectrum of pathological processes at synapses that can lead to a broad range of clinical manifestations such as intellectual disabilities, autism and schizophrenia. This study offers new perspectives for a better understanding of these still not understood brain conditions.


Story Source:

The above story is based on materials provided by VIB. Note: Materials may be edited for content and length.


Journal Reference:

  1. Silvia De Rubeis, Emanuela Pasciuto, Ka Wan Li, Esperanza Fernández, Daniele Di Marino, Andrea Buzzi, Linnaea E. Ostroff, Eric Klann, Fried J.T. Zwartkruis, Noboru H. Komiyama, Seth G.N. Grant, Christel Poujol, Daniel Choquet, Tilmann Achsel, Danielle Posthuma, August B. Smit, Claudia Bagni. CYFIP1 Coordinates mRNA Translation and Cytoskeleton Remodeling to Ensure Proper Dendritic Spine Formation. Neuron, 2013; 79 (6): 1169 DOI: 10.1016/j.neuron.2013.06.039

Cite This Page:

VIB. "Shared mechanisms in fragile X syndrome, autism and schizophrenia at neuronal synapses." ScienceDaily. ScienceDaily, 18 September 2013. <www.sciencedaily.com/releases/2013/09/130918132419.htm>.
VIB. (2013, September 18). Shared mechanisms in fragile X syndrome, autism and schizophrenia at neuronal synapses. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/09/130918132419.htm
VIB. "Shared mechanisms in fragile X syndrome, autism and schizophrenia at neuronal synapses." ScienceDaily. www.sciencedaily.com/releases/2013/09/130918132419.htm (accessed July 28, 2014).

Share This




More Mind & Brain News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) — A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com
University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) — An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com
Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) — A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) — The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins