Featured Research

from universities, journals, and other organizations

Tiny bottles and melting corks: Temperature regulates a new delivery system for drugs and fragrances

Date:
September 18, 2013
Source:
Georgia Institute of Technology
Summary:
Microscopic, bottle-like structures with corks that melt at precisely-controlled temperatures could potentially release drugs inside the body or fragrances onto the skin, according to a recently published study.

A scanning electron microscope image showing the polystyrene “bottles with a hole in the surface. The inset shows a magnified view.
Credit: Younan Xia

Microscopic, bottle-like structures with corks that melt at precisely-controlled temperatures could potentially release drugs inside the body or fragrances onto the skin, according to a recently published study.

Typical drug delivery systems act more like sponges than bottles. For example, drugs are absorbed into polymer particles and then allowed to diffuse out over time. The researchers hope that the new system may allow for greater control of drug delivery. Cargo would stay inside the hollow polymer particle when plugged with a solid cork. When the cork is melted by body heat, the drugs would quickly flow out of the particle bottle.

"It's just like when you open wine, you remove the cork," said Younan Xia, a professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. Xia also holds joint appointments in School of Chemistry and Biochemistry and the School of Chemical and Biomolecular Engineering at Georgia Tech.

The melting corks are made of fatty acids, derived from natural oils and fats. The length of the hydrocarbon chains on these molecules can be made longer or shorter to increase or decrease, respectively, the temperature at which they melt. This way, the fragrances in deodorants, for example, would be released only when a person gets hot and sweaty.

The new system for temperature-regulated release was detailed in a recent online edition of the journal Angewandte Chemie International Edition. The research was sponsored by the National Cancer Institute, a National Institutes of Health Director's Pioneer Award, and startup funds from Georgia Tech. Funds were also provided by the Korea Science and Engineering Foundation (KOSEF) and the Korean Ministry of Education and Science.

Drug delivery systems have also been designed to release their cargos in response to pH change, ultrasound, mechanical signals and electric or magnetic fields. Xia's system is the first bottle-and-cork design, but it isn't the first to release drugs in response to temperature. His system, however, has several advantages over other temperature-regulated delivery systems, such as quick and efficient loading of small molecules, macromolecules and even nanoparticles up to 100 nanometers in size. Other temperature-based systems can release their cargos early. In Xia's system, the contents are bottled up until the body hits the desired temperature and then they are quickly released.

"It's like bottled water," Xia said. "When you are thirsty, you can just drink it."

The melting corks are made from a group of phase-changing materials -- fatty acids or fatty alcohols -- that change from solid to liquid when heated to specific melting points. As a proof of principle for the temperature-sensitive delivery system works, in the new study Xia's lab loaded fluorescent dye into the hollow polymer particles. The holes were then corked with solid 1-tetradecanol, a fatty alcohol. After washing away any dye that might be stuck to the outer surfaces of the bottles, a fluorescent micrograph showed that all of the dye was completely bottled up.

The bottles were then heated to 25 and 37 degrees Celsius -- just below the corks' melting point -- but no dye escaped, even after 4 days and vigorous washing in a buffer solution. This performance is better than other delivery systems, Xia said, which typically release some of the drug prematurely.

When bottles were heated to 39 degrees Celsius, the melting point of 1-tetradecanol, the corks melted and the dye was instantly released.

"You can bottle everything and then you put a stopper on top. Whenever you need it, just unplug it and things will come out quickly," said Xia, who is a Georgia Research Alliance Eminent Scholar in Nanomedicine.

The corks tested in the study are expected to pose no harm once inside or on the human body. 1-tetradecanol and lauric acid, a fatty acid that has also been test as a cork, have very low toxicity in small doses, Xia said, because they are derived from natural fats and oils. These same fats are often used as ingredients for food and pharmaceuticals.

Xia said that hydrophobic drugs, such as the majority of anticancer treatments, could be easily loaded into the hollow particles for delivery inside the body. Future studies will examine this possibility in more detail in animal models. Hydrophilic drugs could also be delivered with this system, but the surface of the bottle would need to be modified.

The hollow polymer particles in Xia's study were made of polystyrene, which couldn't be injected safely into the body to deliver drugs, but would work in a scented body cream for applying to the skin.

Xia's lab is currently working on making these microscale particle bottles out of polymers that are approved by the U.S. Food and Drug Administration, such as polycarprolactone, so they can bring translational capability to this system.

"No companies are making anything like this yet," Xia said.

Dong Choon Hyun, a post-doctoral fellow at Georgia Tech, was the lead author of the study. Unyong Jeong, a materials science & engineering professor at Yonsei University in Korea, was a collaborator on the project.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dong Choon Hyun, Ping Lu, Sang-Il Choi, Unyong Jeong, Younan Xia. Microscale Polymer Bottles Corked with a Phase-Change Material for Temperature-Controlled Release. Angewandte Chemie International Edition, 2013; DOI: 10.1002/anie.201305006

Cite This Page:

Georgia Institute of Technology. "Tiny bottles and melting corks: Temperature regulates a new delivery system for drugs and fragrances." ScienceDaily. ScienceDaily, 18 September 2013. <www.sciencedaily.com/releases/2013/09/130918175551.htm>.
Georgia Institute of Technology. (2013, September 18). Tiny bottles and melting corks: Temperature regulates a new delivery system for drugs and fragrances. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2013/09/130918175551.htm
Georgia Institute of Technology. "Tiny bottles and melting corks: Temperature regulates a new delivery system for drugs and fragrances." ScienceDaily. www.sciencedaily.com/releases/2013/09/130918175551.htm (accessed September 15, 2014).

Share This



More Health & Medicine News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Ministers and Experts Meet to Discuss Ebola Reponse

EU Ministers and Experts Meet to Discuss Ebola Reponse

AFP (Sep. 15, 2014) The European Commission met on Monday to coordinate aid that the EU can offer to African countries affected by the Ebola outbreak. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com
Respiratory Virus Spreads To Northeast, Now In 21 States

Respiratory Virus Spreads To Northeast, Now In 21 States

Newsy (Sep. 14, 2014) The respiratory virus Enterovirus D68, which targets children, has spread from the Midwest to 21 states. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins