Featured Research

from universities, journals, and other organizations

How new substances form: Learning to control and optimize processes

Date:
September 19, 2013
Source:
University of Stuttgart
Summary:
Gas bubbles rise in a liquid. What looks like a bottle of sparkling mineral water actually is a type of reactor frequently used in industry -- a bubble column. These reactors are found in laboratories and large technology towers at almost any chemical plant. New compounds, created at the bubble's boundary layers, are the raw materials for numerous objects of our everyday life. Developing ways to control these processes and to optimize them is therefore of great interest.

Stuttgart researchers simulate processes in bubble column.
Credit: Image courtesy of University of Stuttgart

Gas bubbles rise in a liquid. What looks like a bottle of sparkling mineral water actually is a type of reactor frequently used in industry -- a bubble column. These reactors are found in laboratories and large technology towers at almost any chemical plant. New compounds, created at the bubble's boundary layers, are the raw materials for numerous objects of our everyday life. Developing ways to control these processes and to optimize them is therefore of great interest. In the framework of the Collaborative Research Center (SFB 716), scientists from the Institute of Chemical Process Engineering at the University of Stuttgart work on exactly this topic. They develop computer simulations to test relevant factors.

Inside of a bubble column, gas bubbles rise in a liquid. While this happens, chemical processes take place at their outer layers where different substances are in contact. About 90 percent of all products of the chemical industry are generated in this way. These products are ultimately incorporated into a variety of goods such as cosmetics, clothing, plastic items (bottles, garbage bags, foils), as well as synthetic fuels, such as those used for the propulsion of ships or missiles.

Simulations are one way to better understand and optimize the process of formation of those chemical

products. So far, scientists mostly modeled the circulation of gas bubbles and the induced fluid flow, using computer simulations. However, this approach only allows for limited predictions about varying process conditions.

This could be changed by particle simulations, which were developed at the Collaborative Research Center (SFB 716) focusing on "Dynamic Simulations of Systems with Large Numbers of Particles" at the University of Stuttgart. The research team led by Prof. Dr.-Ing. Ulrich Nieken at the Institute of Chemical Engineering concentrates its research efforts on the boundary layers of the gas bubbles, since this is where the actual chemical reactions take place.

The researchers develop computer simulations to test relevant factors such as column size, quantities

of liquid, or different combinations of substances. By means of these simulations, they want to clarify important details like: Under what conditions do the desired reactions occur? What chemical phenomena play a role? What quantity of the final product can be produced, and how can these processes be accelerated to optimize throughput?

To achieve this, the researchers develop complex numerical calculation schemes for which they utilize high performance computer clusters or graphics cards. The methods developed by the scientists of the SFB are cutting edge in simulations of the described processes.


Story Source:

The above story is based on materials provided by University of Stuttgart. Note: Materials may be edited for content and length.


Journal Reference:

  1. Manuel Hirschler, Franz Keller, Manuel Huber, Winfried Sไckel, Ulrich Nieken. Ein gitterfreies Berechnungsverfahren zur Simulation von Koaleszenz in Mehrphasensystemen. Chemie Ingenieur Technik, 2013; 85 (7): 1099 DOI: 10.1002/cite.201200211

Cite This Page:

University of Stuttgart. "How new substances form: Learning to control and optimize processes." ScienceDaily. ScienceDaily, 19 September 2013. <www.sciencedaily.com/releases/2013/09/130919085628.htm>.
University of Stuttgart. (2013, September 19). How new substances form: Learning to control and optimize processes. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2013/09/130919085628.htm
University of Stuttgart. "How new substances form: Learning to control and optimize processes." ScienceDaily. www.sciencedaily.com/releases/2013/09/130919085628.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins