Featured Research

from universities, journals, and other organizations

Geologists simulate deep earthquakes in lab

Date:
September 19, 2013
Source:
University of California - Riverside
Summary:
Geologists have shown how deep earthquakes can be simulated in the laboratory. The experiments were performed using a new type of apparatus that uses synchrotron X-rays.

This image shows olivine crystal of a sample used to simulate deep earthquakes. The olivine contains small crystals of pyroxene within it that have been cut by "nanofaults." The numbers each show the parts of a pyroxene crystal that has been cut and displaced along a "nanofault."
Credit: Green Lab, UC Riverside.

More than 20 years ago, geologist Harry Green, now a distinguished professor of the graduate division at the University of California, Riverside, and colleagues discovered a high-pressure failure mechanism that they proposed then was the long-sought mechanism of very deep earthquakes (earthquakes occurring at more than 400 km depth).

Related Articles


The result was controversial because seismologists could not find a seismic signal in Earth that could confirm the results.

Seismologists have now found the critical evidence. Indeed, beneath Japan, they have even imaged the tell-tale evidence and showed that it coincides with the locations of deep earthquakes.

In the Sept. 20 issue of the journal Science, Green and colleagues show just how such deep earthquakes can be simulated in the laboratory.

"We confirmed essentially all aspects of our earlier experimental work and extended the conditions to significantly higher pressure," Green said. "What is crucial, however, is that these experiments are accomplished in a new type of apparatus that allows us to view and analyze specimens using synchrotron X-rays in the premier laboratory in the world for this kind of experiments -- the Advanced Photon Source at Argonne National Laboratory."

The ability to do such experiments has now allowed scientists like Green to simulate the appropriate conditions within Earth and record and analyze the "earthquakes" in their small samples in real time, thus providing the strongest evidence yet that this is the mechanism by which earthquakes happen at hundreds of kilometers depth.

The origin of deep earthquakes fundamentally differs from that of shallow earthquakes (earthquakes occurring at less than 50 km depth). In the case of shallow earthquakes, theories of rock fracture rely on the properties of coalescing cracks and friction.

"But as pressure and temperature increase with depth, intracrystalline plasticity dominates the deformation regime so that rocks yield by creep or flow rather than by the kind of brittle fracturing we see at smaller depths," Green explained. "Moreover, at depths of more than 400 kilometers, the mineral olivine is no longer stable and undergoes a transformation resulting in spinel. a mineral of higher density"

The research team focused on the role that phase transformations of olivine might play in triggering deep earthquakes. They performed laboratory deformation experiments on olivine at high pressure and found the "earthquakes" only within a narrow temperature range that simulates conditions where the real earthquakes occur in Earth.

"Using synchrotron X-rays to aid our observations, we found that fractures nucleate at the onset of the olivine to spinel transition," Green said. "Further, these fractures propagate dynamically so that intense acoustic emissions are generated. These phase transitions in olivine, we argue in our research paper, provide an attractive mechanism for how very deep earthquakes take place."

Green was joined in the study by Alexandre Schubnel at the Ecole Normale Supérieure, France; Fabrice Brunet at the Université de Grenoble, France; and Nadège Hilairet, Julian Gasc and Yanbin Wang at the University of Chicago, Ill.


Story Source:

The above story is based on materials provided by University of California - Riverside. The original article was written by Iqbal Pittalwala. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Schubnel, F. Brunet, N. Hilairet, J. Gasc, Y. Wang, H. W. Green. Deep-Focus Earthquake Analogs Recorded at High Pressure and Temperature in the Laboratory. Science, 2013; 341 (6152): 1377 DOI: 10.1126/science.1240206

Cite This Page:

University of California - Riverside. "Geologists simulate deep earthquakes in lab." ScienceDaily. ScienceDaily, 19 September 2013. <www.sciencedaily.com/releases/2013/09/130919142200.htm>.
University of California - Riverside. (2013, September 19). Geologists simulate deep earthquakes in lab. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2013/09/130919142200.htm
University of California - Riverside. "Geologists simulate deep earthquakes in lab." ScienceDaily. www.sciencedaily.com/releases/2013/09/130919142200.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) — The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) — Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Ivory Trade Boom Swamps Law Efforts

Ivory Trade Boom Swamps Law Efforts

Reuters - Business Video Online (Dec. 17, 2014) — Demand for ivory has claimed the lives of tens of thousands of African elephants and now a conservation report says the illegal trade is overwhelming efforts to enforce the law. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins