Featured Research

from universities, journals, and other organizations

Groundbreaking pain research

Date:
September 19, 2013
Source:
University of Kentucky
Summary:
The bodies of mammals, including humans, respond to injury by releasing endogenous opioids -- compounds that mitigate acute pain. A team of researchers has uncovered groundbreaking new information about how the body responds to traumatic injury with the development of a surprisingly long-lasting opioid mechanism of natural chronic pain control. Remarkably, the body develops both physical and physiological dependence on this opioid system, just as it does to opiate narcotic drugs.

A team of researchers has uncovered groundbreaking new information about how the body responds to injury.
Credit: University of Kentucky

The bodies of mammals, including humans, respond to injury by releasing endogenous opioids -- compounds that mitigate acute pain. A team of researchers led by those at the University of Kentucky has uncovered groundbreaking new information about how the body responds to traumatic injury with the development of a surprisingly long-lasting opioid mechanism of natural chronic pain control. Remarkably, the body develops both physical and physiological dependence on this opioid system, just as it does to opiate narcotic drugs. The research is featured on the cover of the current issue of the prestigious journal Science.

The paper, titled Constitutive Mu-Opioid Receptor Activity Leads to Long-term Endogenous Analgesia and Dependence, was authored by a team including lead author Bradley Taylor of the University of Kentucky College of Medicine Department of Physiology. Other authors include: Gregory Corder, Suzanne Doolen and Renee Donahue of the UK Department of Physiology; Brandon Jutras of the UK College of Medicine Department of Microbiology, Immunology and Molecular Genetics; Michelle Winter and Kenneth McCarson of the University of Kansas; Ying He, Zaijie Wang and Xiaoyu Hu of the University of Illinois; Jeffrey Wieskopf and Jeffrey Mogil of McGill University; and Daniel Storm of the University of Washington.

The scientists examined opioid function at sites of pain modulation in the spinal cord. When the opioids act at opioid receptor proteins, they "put the brakes" on the transmission of pain signals to the brain. For example, opioids are released when a patient undergoes surgery, a soldier is wounded in battle, or an athlete runs a marathon. Researchers have known for a while that blocking opioid receptors can increase the intensity of acute pain -- the pain occurring immediately after injury. But up to this point, scientists had been unsure whether blocking opioids could increase chronic, long-term pain. They began their work with the idea that the opioid system is much more important than previously recognized, with an ability to indefinitely oppose chronic pain. If true, they reasoned, then blocking opioids should increase chronic pain.

To simulate human injury, the researchers produced inflammation, or skin incision, in a mouse model, then waited several weeks for signs of pain-like behaviors to subside. They then administered opioid receptor blockers, effectively halting the pain-relieving actions of the opioid system. When the opioid system (which the authors use the term MORCA, for mu opioid receptor constitutive activity) was blocked, the mice reverted to a set of behaviors associated with the experience of pain. Surprisingly, they also experienced symptoms similar to the known effects of opioid withdrawal in the drug addict: tremor, jumping and shakiness. These results were observed even up to six and a half months after pain had seemingly resolved. The long-lasting nature of the phenomenon suggests that endogenous opioid analgesia silently continues long after an injury has healed.

In other words, long after an acute injury has healed, MORCA continues to "put the brakes" on pain. When MORCAis blocked, the "accelerator" is allowed to run free, and chronic pain reappears.

Because the body appears to develop a reliance on MORCA that parallels the addiction of a synthetic opioid user, and because it is known that stress is a key factor in causing relapse in opioid addicts, it follows that stress may also be a key factor in relapse in chronic pain patients. Thus, the authors speculate that stress could interfere with endogenous MORCA analgesia, leading to the emergence of widespread, rampant chronic pain such as is observed in a range of conditions, including fibromyalgia.

This research provides some answers to how the body responds to pain, but also raises questions. To return to the "brake and accelerator" metaphor, future studies are needed to better understand the long-term consequences of simultaneously pressing the accelerator and the brake on pain. In other words, how can we either prevent the "brake pads" from wearing out, or replace them when they do?


Story Source:

The above story is based on materials provided by University of Kentucky. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. Corder, S. Doolen, R. R. Donahue, M. K. Winter, B. L. Jutras, Y. He, X. Hu, J. S. Wieskopf, J. S. Mogil, D. R. Storm, Z. J. Wang, K. E. Mccarson, and B. K. Taylor. Constitutive μ-Opioid Receptor Activity Leads to Long-Term Endogenous Analgesia and Dependence. Science, September 2013 DOI: 10.1126/science.1239403

Cite This Page:

University of Kentucky. "Groundbreaking pain research." ScienceDaily. ScienceDaily, 19 September 2013. <www.sciencedaily.com/releases/2013/09/130919142206.htm>.
University of Kentucky. (2013, September 19). Groundbreaking pain research. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2013/09/130919142206.htm
University of Kentucky. "Groundbreaking pain research." ScienceDaily. www.sciencedaily.com/releases/2013/09/130919142206.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins