Featured Research

from universities, journals, and other organizations

Formation of unusual ring of radiation around Earth explained

Date:
September 22, 2013
Source:
University of California - Los Angeles
Summary:
Since the discovery of the Van Allen radiation belts, scientists believed these belts consisted of two rings of highly charged particles. In February, scientists reported the discovery of a previously unknown third radiation ring -- a narrow ring that briefly circled the Earth for a month. Space scientists have successfully modeled and explained the unprecedented behavior of this third ring, and show that its energetic particles are driven by very different physics than the others.

Ring-formation between belts: Model showing third radiation ring (red). Recent observations by NASA's Van Allen Probes mission showed an event in which three radiation zones were observed at extremely high energies, including an unusual medium narrow ring (red) that existed for approximately four weeks. The modeling results, displayed in this illustration, revealed that for particles at these high energies, different physical processes are responsible for the acceleration and loss of electrons in the radiation belts, which explains the formation of the unusual long-lived ring between the belts. The discovery will help protect satellites form the harmful radiation in space, UCLA scientists report.
Credit: Yuri Shprits, Adam Kellerman, Dmitri Subbotin/UCLA

Since the discovery of the Van Allen radiation belts in 1958, space scientists have believed these belts encircling Earth consist of two doughnut-shaped rings of highly charged particles -- an inner ring of high-energy electrons and energetic positive ions and an outer ring of high-energy electrons.

Related Articles


In February of this year, a team of scientists reported the surprising discovery of a previously unknown third radiation ring -- a narrow one that briefly appeared between the inner and outer rings in September 2012 and persisted for a month.

In new research, UCLA space scientists have successfully modeled and explained the unprecedented behavior of this third ring, showing that the extremely energetic particles that made up this ring, known as ultra-relativistic electrons, are driven by very different physics than typically observed Van Allen radiation belt particles. The region the belts occupy -- ranging from about 1,000 to 50,000 kilometers above Earth's surface -- is filled with electrons so energetic they move close to the speed of light.

"In the past, scientists thought that all the electrons in the radiation belts around the Earth obeyed the same physics," said Yuri Shprits, a research geophysicist with the UCLA Department of Earth and Space Sciences. "We are finding now that radiation belts consist of different populations that are driven by very different physical processes."

Shprits, who is also an associate professor at Russia's Skolkovo Institute of Science and Technology, a new university co-organized by MIT, led the study, which is published Sept. 22 in the journal Nature Physics.

The Van Allen belts can pose a severe danger to satellites and spacecraft, with hazards ranging from minor anomalies to the complete failure of critical satellites. A better understanding of the radiation in space is instrumental to protecting people and equipment, Shprits said.

Ultra-relativistic electrons -- which made up the third ring and are present in both the outer and inner belts -- are especially hazardous and can penetrate through the shielding of the most protected and most valuable satellites in space, noted Shprits and Adam Kellerman, a staff research associate in Shprits' group.

"Their velocity is very close to the speed of light, and the energy of their motion is several times larger than the energy contained in their mass when they are at rest," Kellerman said. "The distinction between the behavior of the ultra-relativistic electrons and those at lower energies was key to this study." Shprits and his team found that on Sept. 1, 2012, plasma waves produced by ions that do not typically affect energetic electrons "whipped out ultra-relativistic electrons in the outer belt almost down to the inner edge of the outer belt." Only a narrow ring of ultra-relativistic electrons survived this storm. This remnant formed the third ring.

After the storm, a cold bubble of plasma around Earth expanded to protect the particles in the narrow ring from ion waves, allowing the ring to persist. Shprits' group also found that very low-frequency electromagnetic pulsations that were thought to be dominant in accelerating and losing radiation belt electrons did not influence the ultra-relativistic electrons.

The Van Allen radiation belts "can no longer be considered as one consistent mass of electrons. They behave according to their energies and react in various ways to the disturbances in space," said Shprits, who was honored by President Obama last July with a Presidential Early Career Award for Scientists and Engineers.

"Ultra-relativistic particles move very fast and cannot be at the right frequency with waves when they are close to the equatorial plane," said Ksenia Orlova, a UCLA postdoctoral scholar in Shprits' group who is funded by NASA's Jack Eddy Fellowship. "This is the main reason the acceleration and scattering into the atmosphere of ultra-relativistic electrons by these waves is less efficient."

"This study shows that completely different populations of particles exist in space that change on different timescales, are driven by different physics and show very different spatial structures," Shprits said.

The team performed simulations with a model of Earth's radiation belts for the period from late August 2012 to early October 2012. The simulation, conducted using the physics of ultra-relativistic electrons and space weather conditions monitored by ground stations, matched the observations from NASA's Van Allen Probes mission extraordinarily well, confirming the team's theory about the new ring.

"We have a remarkable agreement between our model and observations, both encompassing a wide range of energies," said Dmitriy Subbotin, a former graduate student of Shprits and current UCLA staff research associate.

"I believe that, with this study, we have uncovered the tip of the iceberg," Shprits said. "We still need to fully understand how these electrons are accelerated, where they originate and how the dynamics of the belts is different for different storms."

Earth's radiation belts were discovered in 1958 by Explorer I, the first U.S. satellite that traveled to space.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yuri Y. Shprits, Dmitriy Subbotin, Alexander Drozdov, Maria E. Usanova, Adam Kellerman, Ksenia Orlova, Daniel N. Baker, Drew L. Turner, Kyung-Chan Kim. Unusual stable trapping of the ultrarelativistic electrons in the Van Allen radiation belts. Nature Physics, 2013; DOI: 10.1038/nphys2760

Cite This Page:

University of California - Los Angeles. "Formation of unusual ring of radiation around Earth explained." ScienceDaily. ScienceDaily, 22 September 2013. <www.sciencedaily.com/releases/2013/09/130922155121.htm>.
University of California - Los Angeles. (2013, September 22). Formation of unusual ring of radiation around Earth explained. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2013/09/130922155121.htm
University of California - Los Angeles. "Formation of unusual ring of radiation around Earth explained." ScienceDaily. www.sciencedaily.com/releases/2013/09/130922155121.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Space & Time News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Crowdfunded Moon Mission Offers To Store Your Digital Memory

Crowdfunded Moon Mission Offers To Store Your Digital Memory

Newsy (Nov. 19, 2014) Lunar Mission One is offering to send your digital memory (or even your DNA) to the moon to be stored for a billion years. Video provided by Newsy
Powered by NewsLook.com
Accidents Ignite Debate on US Commercial Space Travel

Accidents Ignite Debate on US Commercial Space Travel

AFP (Nov. 19, 2014) Serious accidents with two US commercial spacecraft within a week of each-other in October have re-ignited the debate over the place of private corporations in the exploration of space. Duration: 02:08 Video provided by AFP
Powered by NewsLook.com
Lunar Mission One Could Send Your Hair to The Moon

Lunar Mission One Could Send Your Hair to The Moon

Buzz60 (Nov. 19, 2014) A British-led venture called Lunar Mission One plans to send a module to the moon with keepsakes from Earth. Vanessa Freeman (@VanessaFreeTV) tells you how to get your photos and DNA onboard. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins