Featured Research

from universities, journals, and other organizations

Greater desertification control using sand trap simulations

Date:
September 27, 2013
Source:
Springer Science+Business Media
Summary:
A new simulation will help improve artificial sand-control measures designed to help combat desertification. In the fight against desertification, so-called straw checkerboard barriers (SCB) play a significant role. SCB consists of half-exposed criss-crossing rows of straws of wheat, rice, reeds, and other plants. Researchers have performed a numerical simulation of the sand movement inside the SCB. The results will help to understand sand fixation mechanisms that are relevant for sandstorm and land-desertification control.

A new simulation will help improve artificial sand-control measures designed to help combat desertification

In the fight against desertification, so-called straw checkerboard barriers (SCB) play a significant role. SCB consists of half -exposed criss-crossing rows of straws of wheat, rice, reeds, and other plants. The trouble is that our understanding of the laws governing wind-sand movement in SCB and their surrounding area is insufficient. Now, Ning Huang and colleagues from Lanzhou University in China have performed a numerical simulation of the sand movement inside the SCB, described in a paper just published in EPJ E. China is particularly affected by desertification, which affects 18 percent of its territory. The results will help us to understand sand fixation mechanisms that are relevant for sandstorm and land-desertification control.

The authors relied on a simulation of large eddies, which are circulations around an obstruction such as the SCB walls, to study the turbulence stress.. They also used a discrete particle-tracing method to numerically simulate the wind -sand movement inside the SCB. Specifically, they described the sand as a gas, using equations to describe their space-averaged hydrodynamics. They also analysed in detail the movement characteristics of sand particles, the transverse velocities of sand particles and wind-sand flow within the SCB using a model taking into consideration the coupling effects of wind field and sand particles.

Huang and colleagues found that the SCB contributed to a decrease in the sand transport rate in its interior, thus helping the sand fixation. What is more, as the transverse distance increases, the strength of wind-sand flow eddies decreases. Meanwhile, the sand accumulates near the interior walls of the SCB. Finally, as the number of SCBs increases, the wind is less able to transport sand.

Future studies will be designed to optimise SCB design, based on the authors' theoretical analysis. These findings could also be used to study the evolution to sand dunes.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Cite This Page:

Springer Science+Business Media. "Greater desertification control using sand trap simulations." ScienceDaily. ScienceDaily, 27 September 2013. <www.sciencedaily.com/releases/2013/09/130927092352.htm>.
Springer Science+Business Media. (2013, September 27). Greater desertification control using sand trap simulations. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2013/09/130927092352.htm
Springer Science+Business Media. "Greater desertification control using sand trap simulations." ScienceDaily. www.sciencedaily.com/releases/2013/09/130927092352.htm (accessed September 21, 2014).

Share This



More Earth & Climate News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will Climate Rallies Spur Change?

Will Climate Rallies Spur Change?

Newsy (Sep. 21, 2014) Organizers of the People's Climate March and other rallies taking place in 166 countries hope to move U.N. officials to action ahead of their summit. Video provided by Newsy
Powered by NewsLook.com
Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
Climate Change Rally Held in India Ahead of UN Summit

Climate Change Rally Held in India Ahead of UN Summit

AFP (Sep. 20, 2014) Some 125 world leaders are expected to commit to action on climate change at a UN summit Tuesday called to inject momentum in struggling efforts to tackle global warming. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins