Featured Research

from universities, journals, and other organizations

Skin receptors convey sensation of texture through vibrations

Date:
September 30, 2013
Source:
University of Chicago Medical Center
Summary:
New research shows that humans distinguish the difference between fine textures, such as silk or satin, through vibrations, which are picked up by two separate sets of nerve receptors in the skin and relayed to the brain.

This is a laser microscope image of denim. When we run our fingers along a surface, variations in the surface produce vibrations in the skin which are conveyed as information about texture to the brain.
Credit: Bensmaia/University of Chicago

New research shows that humans distinguish the difference between fine textures, such as silk or satin, through vibrations, which are picked up by two separate sets of nerve receptors in the skin and relayed to the brain.

Previous research has shown that coarse textures, such as Braille dot patterns, are encoded by receptors that are densely packed into the primate fingertip. The spatial layout of responses of these receptors corresponds to the spatial layout of surface features of a texture. However, most natural textures are too fine to be perceived in this manner. A new study published early online in the Proceedings of the National Academy of Sciences shows, for the first time, that two other sets of receptors convey information about fine textures by responding to the high-frequency vibrations produced in the skin as it is scanned across a surface.

"Coarse textures are reflected in the spatial pattern of responses by one set of receptors, but that's only a small part of the story," said the study's senior author, Sliman Bensmaia, PhD, assistant professor in the Department of Organismal Biology and Anatomy at the University of Chicago. "Most of what we consider to be natural textures are represented in temporal patterns of activation in the other two groups of receptors."

The majority of studies investigating the neural basis of texture perception have used coarse materials, such as gratings and Braille patterns, which activate a set of receptors in the skin called slowly adapting type 1 (SA1) afferents.

In the experiments performed in this study, Bensmaia and his colleagues used a drum covered with strips of such coarse textures, along with several materials with finer textures, such as sandpaper, fabrics and plastics. The drum then ran the textures across the fingertips of Rhesus macaques, whose somatosensory system is similar to humans, while the researchers recorded the neuronal responses.

While the coarse textures produced the familiar SA1 response, the SA1 afferents did not fire at all for the majority of the finer textures. Instead, two sets of afferents that have not been implicated previously in texture sensation, rapidly adapting (RA) and Pacinian (PC) fibers, responded in a temporal pattern that followed the vibrations produced in the skin by scanning the surface.

"If you relied on SA1 afferents alone for texture perception, you would not be able to discriminate most textures. You couldn't tell silk from satin, or denim from felt and corduroy," Bensmaia said.

Until now, rapidly adapting afferents were primarily thought to play a role in detecting when an object was slipping from a grasp. Pacininan afferents were thought to detect vibrations such as those felt after striking something with a hammer.

In addition to ascribing to these receptors a new role in touch, the study highlights that touch employs two modes of operation: One based on spatial patterns of activation, the other on temporal patterns. These two modes coexist and interact.

The research has important implications for the field of neuroprosthetics, which seeks to develop devices that can substitute for a motor, sensory or cognitive functions that might have been damaged through injury or disease. To produce realistic tactile sensations, both modes must be engaged. This is true whether the goal is to elicit texture percepts or any other kind of artificial tactile sensation.

"What we've shown here is that all three sets of afferents contribute to texture perception," Bensmaia said. "In fact, signals from all three populations are integrated to culminate in any kind of tactile perception."


Story Source:

The above story is based on materials provided by University of Chicago Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. I. Weber, H. P. Saal, J. D. Lieber, J.-W. Cheng, L. R. Manfredi, J. F. Dammann, S. J. Bensmaia. Spatial and temporal codes mediate the tactile perception of natural textures. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1305509110

Cite This Page:

University of Chicago Medical Center. "Skin receptors convey sensation of texture through vibrations." ScienceDaily. ScienceDaily, 30 September 2013. <www.sciencedaily.com/releases/2013/09/130930152739.htm>.
University of Chicago Medical Center. (2013, September 30). Skin receptors convey sensation of texture through vibrations. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2013/09/130930152739.htm
University of Chicago Medical Center. "Skin receptors convey sensation of texture through vibrations." ScienceDaily. www.sciencedaily.com/releases/2013/09/130930152739.htm (accessed April 19, 2014).

Share This



More Mind & Brain News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins