Featured Research

from universities, journals, and other organizations

Stem cells engineered to become targeted drug factories

Date:
October 4, 2013
Source:
Harvard University
Summary:
A group researchers have found a way to use stem cells as drug delivery vehicles. The researchers inserted modified strands of messenger RNA into connective tissue stem cells -- called mesenchymal stem cells -- which stimulated the cells to produce adhesive surface proteins and secrete interleukin-10, an anti-inflammatory molecule.

Engineered mesenchymal stem cells are targeted to a site of inflammation to secrete anti-inflammatory interleukin-10 proteins.
Credit: Courtesy: Jeffrey Karp

A group of Brigham and Women's Hospital, and Harvard Stem Cell Institute researchers, and collaborators at MIT and Massachusetts General Hospital have found a way to use stem cells as drug delivery vehicles.

Related Articles


The researchers inserted modified strands of messenger RNA into connective tissue stem cells -- called mesenchymal stem cells -- which stimulated the cells to produce adhesive surface proteins and secrete interleukin-10, an anti-inflammatory molecule. When injected into the bloodstream of a mouse, these modified human stem cells were able to target and stick to sites of inflammation and release biological agents that successfully reduced the swelling.

"If you think of a cell as a drug factory, what we're doing is targeting cell-based, drug factories to damaged or diseased tissues, where the cells can produce drugs at high enough levels to have a therapeutic effect," said research leader Jeffrey Karp, PhD, a Harvard Stem Cell Institute principal faculty member and Associate Professor at the Brigham and Women's Hospital, Harvard Medical School, and Affiliate faculty at MIT.

Karp's proof of concept study, published in the journal Blood, is drawing early interest from biopharmaceutical companies for its potential to target biological drugs to disease sites. While ranked as the top sellers in the drug industry, biological drugs are still challenging to use, and Karp's approach may improve their clinical application as well as improve the historically mixed, clinical trial results of mesenchymal stem cell-based treatments.

Mesenchymal stem cells have become cell therapy researchers' tool of choice because they can evade the immune system, and thus are safe to use even if they are derived from another person. To modify the cells with messenger RNA, the researchers used the RNA delivery and cell programming technique that was previously developed in the MIT laboratory of Mehmet Fatih Yanik, PhD. This RNA technique to program cells is harmless, as it does not modify the cells' genome, which can be a problem when DNA is used (via viruses) to manipulate gene expression.

"This opens the door to thinking of messenger RNA transfection of cell populations as next generation therapeutics in the clinic, as they get around some of the delivery challenges that have been encountered with biological agents," said Oren Levy, PhD, co-lead author of the study and Instructor of Medicine in Karp's lab. The study was also co-led by Weian Zhao, PhD, at University of California, Irvine who was previously a postdoctoral fellow in Karp's lab.

One such challenge with using mesenchymal stem cells is they have a "hit-and-run" effect, since they are rapidly cleared after entering the bloodstream, typically within a few hours or days. The Harvard/MIT team demonstrated that rapid targeting of the cells to the inflamed tissue produced a therapeutic effect despite the cells being rapidly cleared. The scientists want to extend cell lifespan even further and are experimenting with how to use messenger RNA to make the stem cells produce pro-survival factors.

"We're interested to explore the platform nature of this approach and see what potential limitations it may have or how far we can actually push it," Zhao said. "Potentially, we can simultaneously deliver proteins that have synergistic therapeutic impacts."


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Journal Reference:

  1. O. Levy, W. Zhao, L. J. Mortensen, S. LeBlanc, K. Tsang, M. Fu, J. A. Phillips, V. Sagar, P. Anandakumaran, J. Ngai, C. H. Cui, P. Eimon, M. Angel, C. P. Lin, M. F. Yanik, J. M. Karp. mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood, 2013; 122 (14): e23 DOI: 10.1182/blood-2013-04-495119

Cite This Page:

Harvard University. "Stem cells engineered to become targeted drug factories." ScienceDaily. ScienceDaily, 4 October 2013. <www.sciencedaily.com/releases/2013/10/131004105243.htm>.
Harvard University. (2013, October 4). Stem cells engineered to become targeted drug factories. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2013/10/131004105243.htm
Harvard University. "Stem cells engineered to become targeted drug factories." ScienceDaily. www.sciencedaily.com/releases/2013/10/131004105243.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins