Featured Research

from universities, journals, and other organizations

Malaria, toxoplasmosis: Toward new lines of research?

Date:
October 10, 2013
Source:
University of Glasgow
Summary:
A study could redefine part of the present lines of research toward a treatment against the parasites responsible for malaria and toxoplasmosis.

This work, published on 10th October on the website of Nature Communications, concerns the role of one protein which is common to these parasites. Called AMA1, it has been at the heart of many years' research on upgrading treatments, such as trying out vaccination against malaria. However, the present authors have reservations about the success of therapeutic strategies which rely solely on the blockage of AMA1, by demonstrating that the malaria and toxoplasmosis parasites, without the protein, can develop normally.

Related Articles


With 1 million victims every year, malaria is the most dangerous parasitic disease in the world, while Toxoplasmosis, often asymptomatic, represents a danger to pregnant women and those with weak immune systems.

Plasmodium falciparum and Toxoplasma gondii, the parasites responsible respectively for malaria and toxoplasmosis, belong to the group of Apicomplexa. This group, wholly composed of parasite organisms, share a common protein called AMA1. This protein is described in many studies as being indispensable for entry into the cells they infect. As a result, since its discovery, many research teams have made AMA1 a major therapeutic target in the improvement of treatments.

However, a collaboration between the teams of Robert Ménard at the Institut Pasteur in Paris, Isabelle Tardieux at the Institut Cochin, and Markus Meissner at the University of Glasgow, has just shown that Plasmodium falciparum and Toxoplasma gondii can survive and multiply in the infected cells totally without the action of AMA1. This discovery will have an important impact on the search for a treatment for malaria and toxoplasmosis.

The team generated parasites totally lacking AMA1 thanks to a technique of "reverse genetics," never before used in the field. The scientists thus made the following observations: in the absence of AMA1, Plasmodium falciparum, at all human stages (blood and liver), is capable of invading the host cells. The same is true of one of the two human stages of Toxoplasma gondii. On the other hand, for both parasites, the attachment to the host cells, which precedes cellular invasion, is affected.

As a result, the scientists have deduced that AMA1, short of being indispensable to the process of cellular invasion, is in fact a protein implicated in the adhesion to host cells.

As a result of their observations, the researchers are recommending ways of optimising research which targets AMA1 with a view to improving treatments. In particular, they suggest that therapeutic strategies should be based on the blockage of other proteins complementary to AMA1.


Story Source:

The above story is based on materials provided by University of Glasgow. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel Y. Bargieri, Nicole Andenmatten, Vanessa Lagal, Sabine Thiberge, Jamie A. Whitelaw, Isabelle Tardieux, Markus Meissner, Robert Ménard. Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3552

Cite This Page:

University of Glasgow. "Malaria, toxoplasmosis: Toward new lines of research?." ScienceDaily. ScienceDaily, 10 October 2013. <www.sciencedaily.com/releases/2013/10/131010105044.htm>.
University of Glasgow. (2013, October 10). Malaria, toxoplasmosis: Toward new lines of research?. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2013/10/131010105044.htm
University of Glasgow. "Malaria, toxoplasmosis: Toward new lines of research?." ScienceDaily. www.sciencedaily.com/releases/2013/10/131010105044.htm (accessed October 26, 2014).

Share This



More Health & Medicine News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins