Featured Research

from universities, journals, and other organizations

Laser technique enables 3-D analysis and natural color images

Date:
October 10, 2013
Source:
Penn State Materials Research Institute
Summary:
A new technology invented to automate the laborious process of preparing plant roots for phenotyping has morphed into a powerful tool for exploring the three-dimensional structure of small objects.

A bisected yellow jacket head.
Credit: Benjamin Hall

A new technology invented to automate the laborious process of preparing plant roots for phenotyping has morphed into a powerful tool for exploring the three-dimensional structure of small objects. Now, two former Penn State students have formed a start-up company targeting agribusiness and horticultural research.

Related Articles


The standard method of preparing root samples for analysis requires cutting thin slices of root by hand, a process that yields four to five slices per hour. Jonathan Lynch, a professor of plant nutrition at Penn State and head of the Roots Lab, had a backlog of 20,000 samples he was studying to improve drought tolerance and nutritional uptake in low fertility soil. Benjamin Hall was an undergraduate student in energy engineering working part-time in the laser lab of the Applied Research Laboratory at Penn State. Lynch applied for a small grant from the National Science Foundation's Research Experience for Undergraduates (REU) program, which funded Hall to work on a project to apply lasers for slicing his root samples.

Using a nanosecond-pulse laser, Hall developed a method to slice 11 identically spaced root samples per second. "Then I had to take the samples all the way across campus to the root lab to have them analyzed," Hall says. "It was easier to buy a good camera lens and take the photos myself and send the files to the lab."

Hall struggled with finding the proper backlighting to make clear images but eventually discovered that the laser itself provided sufficient light to light up the image while it was being cut. By placing the root on a moveable platform beneath the laser, he could incrementally vaporize sections of the root, leaving a series of clear surface images, which could be combined with software to make a 3D rendering of the interior and exterior of the sample.

"This is a tomography technique, and there are others out there," says Hall. "But x-ray tomography basically works by mapping the density of a substance, which is great unless the specimen has different materials of similar density. That can make it hard to differentiate structures, so it can be difficult to quantify measurements. Magnetic resonance imaging (MRI) we're not even competing with. Those machines are so big and complex, and so expensive to operate compared to our system."

The laser tomography method is novel in that it provides high contrast, full color images without the use of contrast enhancing agents. This allows researchers to see nuance compositional differences in their samples they would not be able to see otherwise. Additional benefits of the laser tomography method are its speed, on the order of minutes, and that in most cases no preparation is required for the small biological specimens studied.

Penn State has applied for a patent, and Hall and his business partner Brian Reinhardt, a former Penn State graduate student, have founded a company, Lasers for Innovative Solutions (L4IS), aimed at providing large agriculture companies with high throughput phenotyping of their new products, something they don't currently have. Reinhardt has a physics and computer science background and an interest in computer gaming.

At a recent talk at Penn State's Millennium Science Complex, Hall wowed the audience with images of the complex internal structures of plants and insects. But beyond the wow factor, it was the possibility of gathering scientific data in a colorful, clear, and detailed three-dimensional representation that had the audience talking. There were suggestions for new scientific uses for his technology, which Hall welcomed. "We don't even know what all we can do with this yet.

"Technology is moving so fast. There are techniques we can combine with ours to get chemical information out of the samples. We have to start approaching some of these scientific problems differently. We can do 3D analysis. Now what else can we do?"


Story Source:

The above story is based on materials provided by Penn State Materials Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Penn State Materials Research Institute. "Laser technique enables 3-D analysis and natural color images." ScienceDaily. ScienceDaily, 10 October 2013. <www.sciencedaily.com/releases/2013/10/131010124356.htm>.
Penn State Materials Research Institute. (2013, October 10). Laser technique enables 3-D analysis and natural color images. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2013/10/131010124356.htm
Penn State Materials Research Institute. "Laser technique enables 3-D analysis and natural color images." ScienceDaily. www.sciencedaily.com/releases/2013/10/131010124356.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) — Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) — In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) — Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) — British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins