Featured Research

from universities, journals, and other organizations

The role of 'master regulators' in gene mutations and disease

Date:
October 13, 2013
Source:
University of California, San Diego Health Sciences
Summary:
Researchers have developed a new way to parse and understand how special proteins called "master regulators" read the genome, and consequently turn genes on and off.

Researchers at the University of California, San Diego School of Medicine have developed a new way to parse and understand how special proteins called "master regulators" read the genome, and consequently turn genes on and off.

Related Articles


Writing in the October 13, 2013 Advance Online Publication of Nature, the scientists say their approach could make it quicker and easier to identify specific gene mutations associated with increased disease risk -- an essential step toward developing future targeted treatments, preventions and cures for conditions ranging from diabetes to neurodegenerative disease.

"Given the emerging ability to sequence the genomes of individual patients, a major goal is to be able to interpret that DNA sequence with respect to disease risk. What diseases is a person genetically predisposed to?" said principal investigator Christopher Glass, MD, PhD, a professor in the departments of Medicine and Cellular and Molecular Medicine at UC San Diego.

"Mutations that occur in protein-coding regions of the genome are relatively straight forward, but most mutations associated with disease risk actually occur in regions of the genome that do not code for proteins," said Glass. "A central challenge has been developing a strategy that assesses the potential functional impact of these non-coding mutations. This paper lays the foundation for doing so by examining how natural genetic variation alters the function of genomic regions controlling gene expression in a cell specific-manner."

Cells use hundreds of different proteins called transcription factors to "read" the genome, employing those instructions to turn genes on and off. These factors tend to be bound close together on the genome, forming functional units called "enhancers." Glass and colleagues hypothesized that while each cell has tens of thousands of enhancers consisting of myriad combinations of factors, most enhancers are established by just a handful of special transcription factors called "master regulators." These master regulators play crucial, even disproportional, roles in defining each cell's identity and function, such as whether it will be a muscle, skin or heart cell.

"Our main idea was that the binding of these master regulators is necessary for the co-binding of the other transcription factors that together enable enhancers to regulate the expression of nearby genes," Glass said.

The scientists tested and validated their hypothesis by looking at the effects of approximately 4 million DNA sequence differences affecting master regulators in macrophage cells in two strains of mice. Macrophages are a type of immune response cell. They found that DNA sequence mutations deciphered by master regulators not only affected how they bound to the genome, but also impacted neighboring transcription factors needed to make functional enhancers.

The findings have practical importance for scientists and doctors investigating the genetic underpinnings of disease, said Glass. "Without actual knowledge of where the master regulator binds, there is relatively little predictive value of the DNA sequence for non-coding variants. Our work shows that by collecting a focused set of data for the master regulators of a particular cell type, one can greatly reduce the 'search space' of the genome in a particular cell type that would be susceptible to the effects of mutations. This allows prioritization of mutations for subsequent analysis, which can lead to new discoveries and real-world benefits."

Co-authors include Sven Heinz, Casey Romanoski, Karmel A. Allison, Department of Cellular and Molecular Medicine, UCSD; Christopher Benner, Department of Cellular and Molecular Medicine, UCSD, Salk Institute for Biological Studies and San Diego Center for Systems Biology; Minna U. Kiakkonen, Department of Cellular and Molecular Medicine, UCSD and University of Eastern Finland and Luz D. Orozco, UCLA.

Funding support came from National Institutes of Health grants DK091183, CA17390 and DK063491, a Foundation Leducq Career Development award, the Academy of Finland, Finnish Foundation for Cardiovascular Research, Finnish Cultural Foundation, North Savo Regional Fund and the American Heart Association.


Story Source:

The above story is based on materials provided by University of California, San Diego Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Heinz, C. E. Romanoski, C. Benner, K. A. Allison, M. U. Kaikkonen, L. D. Orozco, C. K. Glass. Effect of natural genetic variation on enhancer selection and function. Nature, 2013; DOI: 10.1038/nature12615

Cite This Page:

University of California, San Diego Health Sciences. "The role of 'master regulators' in gene mutations and disease." ScienceDaily. ScienceDaily, 13 October 2013. <www.sciencedaily.com/releases/2013/10/131013163324.htm>.
University of California, San Diego Health Sciences. (2013, October 13). The role of 'master regulators' in gene mutations and disease. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2013/10/131013163324.htm
University of California, San Diego Health Sciences. "The role of 'master regulators' in gene mutations and disease." ScienceDaily. www.sciencedaily.com/releases/2013/10/131013163324.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Malnutrition on the Rise as Violence Flares in C. Africa

Malnutrition on the Rise as Violence Flares in C. Africa

AFP (Jan. 28, 2015) Violence can flare up at any moment in Bambari with only a bridge separating Muslims and Christians. Malnutrition is on the rise and lack of water means simple cooking fires threaten to destroy makeshift camps where people are living. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Poultry Culled in Taiwan to Thwart Bird Flu

Poultry Culled in Taiwan to Thwart Bird Flu

Reuters - News Video Online (Jan. 28, 2015) Taiwan culls over a million poultry in efforts to halt various strains of avian flu. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Media Criticizing Parents For Not Vaccinating Children

Media Criticizing Parents For Not Vaccinating Children

Newsy (Jan. 28, 2015) As the Disneyland measles outbreak continues to spread, the media says parents who choose not to vaccinate their children are part of the cause. Video provided by Newsy
Powered by NewsLook.com
Shark Bite Victim Making Amazing Recovery

Shark Bite Victim Making Amazing Recovery

AP (Jan. 27, 2015) A Texas woman who lost more than five pounds of flesh to a shark in the Bahamas earlier this month could be released from a Florida hospital soon. Experts believe she was bitten by a bull shark while snorkeling. (Jan. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins