Featured Research

from universities, journals, and other organizations

New survey tools unveil two celestial explosions

Date:
October 16, 2013
Source:
Carnegie Institution
Summary:
A team of researchers used a novel astronomical survey software system -- the intermediate Palomar Transient Factory (iPTF) -- to link a new stripped-envelope supernova, named iPTF13bvn, to the star from which it exploded. The iPTF team also pinpointed the first afterglow of an explosion called a gamma-ray burst that was found by the Fermi satellite.

A team of researchers used a novel astronomical survey software system, called the intermediate Palomar Transient Factory, to link a new stripped-envelope supernova, named iPTF13bvn, to the star from which it exploded, which is a first for this type of supernova, called Type Ib. This image shows the location of supernova iPTF13bvn before and after the explosion. The image is courtesy of Iair Arcavi of the Weizmann Institute of Science, and uses data from the Keck II Telescope and the Hubble Space Telescope.
Credit: Iair Arcavi

A team of researchers including Carnegie's Mansi Kasliwal and John Mulchaey used a novel astronomical survey software system -- the intermediate Palomar Transient Factory (iPTF) -- to link a new stripped-envelope supernova, named iPTF13bvn, to the star from which it exploded. The iPTF team also pinpointed the first afterglow of an explosion called a gamma-ray burst that was found by the Fermi satellite.

Related Articles


Their work will be published by The Astrophysical Journal Letters in two papers led by Yi Cao and Leo Singer, both of the California Institute of Technology.

Their findings reflect the first time a star has been linked to the resulting explosion for this type of supernova, called Type Ib. The discovery offers very important answers about how this supernova type is formed, a problem that has eluded scientists for years.

About a third of all supernovae of massive stars are of the Type Ib. There are several theoretical models as to how they are formed, including mass transfer due to solar winds between a pair of binary stars. It is thought that the progenitors are either massive helium stars or a type of very large, very hot stars known as Wolf Rayet stars.

"Pinpointing a progenitor star at exactly the same location as a Type Ib supernova was the best way to test the theories about the genesis of this type of explosion," Kasliwal said. "Now we need to patiently wait for the supernova to fade away and see if the star disappears."

The new supernova was discovered in mid-June. No explosive light source was detected even a day earlier. Baby pictures of this one-day-old supernova were promptly taken by telescopes in the radio, X-ray, ultra-violet, and infrared wavelengths, providing vital clues about its origins.

Detailed analysis of different types of observations of the supernova confirmed that it was, indeed, a Type Ib, and that it reached full luminosity two weeks from its initial explosion. The team detected a progenitor candidate for the explosion in Hubble Space Telescope imaging, linking the supernova to its predecessor star. Future imaging will help identify whether this progenitor was a single star, a binary star, or a star cluster. The team thinks that their observations are consistent with the progenitor having been a Wolf Rayet star. If so this would be a breakthrough discovery.

The subject of the team's second paper using data from the new software system is a gamma ray burst afterglow called iPTF13bxl.

Gamma ray bursts are high-energy explosions that form some of the brightest celestial events. They can signify energy released during a supernova. Each burst is followed by an afterglow, which emits lower wavelength radiation than the original explosion.

Soon after the detection of a gamma-ray burst by the Fermi satellite, the team started hunting for the afterglow over a huge field more than 360-times the size of the full moon. They then had to narrow a list of more than 27,000 gamma-ray burst candidates down to a single afterglow. Follow-up research confirmed the relationship between the iPTF13bxl afterglow and a particular gamma-ray burst called GRB130702A.

The team then used the Magellan telescope to find the afterglow's so-called redshift value, which is a measurement of how much the light from it that reaches us on Earth has been stretched by the expansion of the universe. Thus, it reveals the afterglow's distance and tells astronomers where to look for an object, such as a supernova, which might emerge in the wake of the explosion.

"The sophisticated intermediate Palomar Transient Factory software we used to identify iPTF13bxl now prepares us to locate about 10 gamma-ray bursts every year going forward," said Mulchaey. "And future endeavors could help us identify other, fainter signatures, such as those accompanying the merger of binary neutron stars."

The afterglow discovery was an important milestone on the road to the goal of being able to detect light from gravitational waves in the cosmos, for which scientists have been searching for decades.

The iPTF13bvn work was supported by two Hubble Fellowships, a Carnegie-Princeton Fellowship, and a NSF Astronomy and Astrophysics Postdoctoral Fellowship, as well as grants from ISF, BSF, GIF, Minerva, the EU, and the NSF, in addition to a Kimmel Award.

The iPTF13bxl work was supported by NSF, the Hubble Fellowship, the Carnegie-Princeton Fellowship, the Israeli Ministry of Science, the I-CORE program, and the RCSA Cottrell Scholar Award.

This work was based on observations obtained with the Samuel Oschin Telescope 48-inch and the 60-inch Telescope at the Palomar Observatory as part of the Intermediate Palomar Transient Factory project, a scientific collaboration among the California Institute of Technology, Los Alamos National Laboratory, the University of Wisconsin, Milwaukee, the Oskar Klein Center, the Weizmann Institute of Science, the TANGO Program of the University System of Taiwan, and the Kavli Institute for the Physics and Mathematics of the Universe.

The intermediate Palomar Transient Factory (iPTF) -- led by the California Institute of Technology (Caltech) -- started searching the skies for certain types of stars and related phenomena in February. The iPTF was built on the legacy of the Palomar Transient Factory (PTF), designed in 2008 to systematically chart the transient sky by using a robotic observing system mounted on the 48-inch Samuel Oschin Telescope on Palomar Mountain near San Diego, California.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal References:

  1. Yi Cao, Mansi M. Kasliwal, Iair Arcavi, Assaf Horesh, Paul Hancock, Stefano Valenti, S. Bradley Cenko, S. R. Kulkarni, Avishay Gal-Yam, Evgeny Gorbikov, Eran O. Ofek, David Sand, Ofer Yaron, Melissa Graham, Jeffrey M. Silverman, J. Craig Wheeler, G. H. Marion, Emma S. Walker, Paolo Mazzali, D. Andrew Howell, K. L. Li, A. K. H. Kong, Joshua S. Bloom, Peter E. Nugent, Jason Surace, Frank Masci, John Carpenter, Nathalie Degenaar, Christopher R. Gelino. Discovery, Progenitor and Early Evolution of a Stripped Envelope Supernova iPTF13bvn. The Astrophysical Journal, 2013; 775 (1): L7 DOI: 10.1088/2041-8205/775/1/L7
  2. Leo P. Singer, S. Bradley Cenko, Mansi M. Kasliwal, Daniel A. Perley, Eran O. Ofek, Duncan A. Brown, Peter E. Nugent, S. R. Kulkarni, Alessandra Corsi, Dale A. Frail, Eric Bellm, John Mulchaey, Iair Arcavi, Tom Barlow, Joshua S. Bloom, Yi Cao, Neil Gehrels, Assaf Horesh, Frank J. Masci, Julie McEnery, Arne Rau, Jason A. Surace, Ofer Yaron. Discovery and Redshift of an Optical Afterglow in 71 deg2: iPTF13bxl and GRB 130702A. The Astrophysical Journal, 2013; 776 (2): L34 DOI: 10.1088/2041-8205/776/2/L34

Cite This Page:

Carnegie Institution. "New survey tools unveil two celestial explosions." ScienceDaily. ScienceDaily, 16 October 2013. <www.sciencedaily.com/releases/2013/10/131016132248.htm>.
Carnegie Institution. (2013, October 16). New survey tools unveil two celestial explosions. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2013/10/131016132248.htm
Carnegie Institution. "New survey tools unveil two celestial explosions." ScienceDaily. www.sciencedaily.com/releases/2013/10/131016132248.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Space & Time News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Soyuz Spacecraft Docks With International Space Station: NASA

Soyuz Spacecraft Docks With International Space Station: NASA

AFP (Nov. 24, 2014) A Russian Soyuz spacecraft carrying Italy's first female astronaut safely docks with the International Space Station, according to NASA. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Sky Survey Captures Key Details of Cosmic Explosions

Oct. 16, 2013 Developed to help scientists learn more about the complex nature of celestial objects, astronomical surveys have been cataloging the night sky since the beginning of the 20th century. The iPTF ... read more

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins