Featured Research

from universities, journals, and other organizations

'Chimera' protein could lead to drug treatments for chronic pain

Date:
October 21, 2013
Source:
University of Lincoln
Summary:
Scientists have manufactured a new bio-therapeutic molecule that could be used to treat neurological disorders such as chronic pain and epilepsy.

Scientists have manufactured a new bio-therapeutic molecule that could be used to treat neurological disorders such as chronic pain and epilepsy.

A team of 22 scientists from 11 research institutes, including Dr Enrico Ferrari from the University of Lincoln, UK, created and characterised a new molecule that was able to alleviate hypersensitivity to inflammatory pain.

The work is featured on the cover of the October 2013 issue of the scientific journal Bioconjugate Chemistry.

Dr Ferrari joined the School of Life Sciences in October last year from the Medical Research Council's Laboratory of Molecular Biology in Cambridge, where he took part in the development of a new way of joining and rebuilding molecules in the research group of Professor Bazbek Davletov -- now at the University of Sheffield.

Now, by separating elements of clostridium botulinum and clostridium tetani neurotoxins, commonly known as Botox and tetanus toxin respectively, the scientists were able to develop a model to re-join the molecule proteins yielding new biomedical properties, without unwanted toxic effects.

While the Botox element is able to block neuronal communication -- and therefore pain signals -- for months, the tetanus component targets the engineered toxin to the central nervous system, rather than stopping at exterior neurons that are the normal target of Botox. The combination of the two effects is of great interest for neuroscience and can be applied to the treatment of several neurological disorders, particularly chronic pain conditions.

Botox and tetanus neurotoxins hold great promise for clinical applications, but since they are the most lethal proteins known to man, their paralytic activity was a stumbling block until now.

Dr Ferrari, who is one of the lead authors of the study, said: "The toxins were split into parts so they were unable to function. Then later they were reassembled using a 'zipping' system so they can operate in a safe way. The re-engineered chimera toxin has very similar characteristics to Botox and is still able to block neurotransmission release, but the paralytic effect is a lot less. We then added a tetanus molecule which targets the chimera to where the pain signals travel towards the central nervous system."

Preliminary data on animal models has now been collated at University College London and future clinical trials are expected to fully characterise the new bio-therapeutic.

Dr Ferrari added: "Many painkillers relieve the pain temporarily and have various side effects. The selling point of this molecule is that the pain relief could last up to seven months, in a similar way that Botox injections for removing wrinkles last for several months. Engineering this kind of toxin has many uses and would be a major improvement in the quality of life for those people who suffer from chronic pain. It is very exciting to know that a protein you made could be one of the future drug treatments."

The crux of Dr Ferrari's research is now aimed at creating a method where more than two protein elements can be combined together and their exact order dictated, which will open up further avenues to explore possible medical uses in the future.


Story Source:

The above story is based on materials provided by University of Lincoln. Note: Materials may be edited for content and length.


Journal Reference:

  1. Enrico Ferrari, Chunjing Gu, Dhevahi Niranjan, Laura Restani, Christine Rasetti-Escargueil, Ilona Obara, Sandrine M. Geranton, Jason Arsenault, Tom A. Goetze, Callista B. Harper, Tam H. Nguyen, Elizabeth Maywood, John O’Brien, Giampietro Schiavo, Daniel W. Wheeler, Frederic A. Meunier, Michael Hastings, J. Michael Edwardson, Dorothea Sesardic, Matteo Caleo, Stephen P. Hunt, Bazbek Davletov. Synthetic Self-Assembling Clostridial Chimera for Modulation of Sensory Functions. Bioconjugate Chemistry, 2013; 24 (10): 1750 DOI: 10.1021/bc4003103

Cite This Page:

University of Lincoln. "'Chimera' protein could lead to drug treatments for chronic pain." ScienceDaily. ScienceDaily, 21 October 2013. <www.sciencedaily.com/releases/2013/10/131021115558.htm>.
University of Lincoln. (2013, October 21). 'Chimera' protein could lead to drug treatments for chronic pain. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2013/10/131021115558.htm
University of Lincoln. "'Chimera' protein could lead to drug treatments for chronic pain." ScienceDaily. www.sciencedaily.com/releases/2013/10/131021115558.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins