Featured Research

from universities, journals, and other organizations

Polymer scientists jam nanoparticles, trapping liquids in useful shapes

Date:
October 24, 2013
Source:
University of Massachusetts at Amherst
Summary:
Sharp observation by a doctoral student in a polymer science and engineering laboratory recently led her to discover how to kinetically trap and control one liquid within another, locking and separating them in a stable system over long periods, with the ability to tailor and manipulate the shapes and flow characteristics of each. The advance holds promise for a wide range of different applications including in drug delivery, biosensing, fluidics, photovoltaics, encapsulation and bicontinuous media for energy applications and separations media.

Sharp observation by doctoral student Mengmeng Cui in Thomas Russell's polymer science and engineering laboratory at the University of Massachusetts Amherst recently led her to discover how to kinetically trap and control one liquid within another, locking and separating them in a stable system over long periods, with the ability to tailor and manipulate the shapes and flow characteristics of each.

Russell, her advisor, points out that the advance holds promise for a wide range of different applications including in drug delivery, biosensing, fluidics, photovoltaics, encapsulation and bicontinuous media for energy applications and separations media.

He says, "It's very, very neat. We've tricked the system into remaining absolutely fixed, trapped in a certain state for as long as we like. Now we can take a material and encapsulate it in a droplet in an unusual shape for a very long time. Any system where I can have co-continuous materials and I can do things independently in both oil and water is interesting and potentially valuable."

Cui, with Russell and his colleague, synthetic chemist Todd Emrick, report their findings in the current issue of Science.

Russell's lab has long been interested in jamming phenomena and kinetically trapped materials, he says. When Cui noticed something unusual in routine experiments, rather than ignore it and start again she decided to investigate further. "This discovery is really a tribute to Cui's observational skills," Russell notes, "that she recognized this could be of importance."

Specifically, the polymer scientists applied an electric field to a system with two liquids to overcome the weak force that stabilizes nanoparticle assemblies at interfaces. Under the influence of the external field, a spherical drop changes shape to an ellipsoid with increased surface area, so it has many more nanoparticles attached to its surface.

When the external field is released, the higher number of surface nanoparticles jam the liquid system, stopping nanoparticle movement like Friday afternoon gridlock on an exit ramp or sand grains stuck in an hourglass, Russell explains. In its jammed state, the nanoparticle-covered droplet retains its ellipsoid shape and still carries many more nanoparticles on its surface, disordered and liquid-like, than it could as a simple spherical drop. This new shape can be permanently fixed. Cui, Russell and Emrick also accomplished the jamming using a mechanical method, stirring.

By generating these jammed nanoparticle surfactants at interfaces, fluid drops of arbitrary shape and size can be stabilized opening applications in fluidics, encapsulation and bicontinuous media for energy applications. Further stabilization is realized by replacing monofunctional ligands with difunctional ones that cross-link the assemblies, the authors note. The ability to generate and stabilize liquids with a prescribed shape poses opportunities for reactive liquid systems, packaging, delivery and storage.


Story Source:

The above story is based on materials provided by University of Massachusetts at Amherst. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mengmeng Cui, Todd Emrick, Thomas P. Russell. Stabilizing Liquid Drops in Nonequilibrium Shapes by the Interfacial Jamming of Nanoparticles. Science, 2013 DOI: 10.1126/science.1242852

Cite This Page:

University of Massachusetts at Amherst. "Polymer scientists jam nanoparticles, trapping liquids in useful shapes." ScienceDaily. ScienceDaily, 24 October 2013. <www.sciencedaily.com/releases/2013/10/131024143317.htm>.
University of Massachusetts at Amherst. (2013, October 24). Polymer scientists jam nanoparticles, trapping liquids in useful shapes. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/10/131024143317.htm
University of Massachusetts at Amherst. "Polymer scientists jam nanoparticles, trapping liquids in useful shapes." ScienceDaily. www.sciencedaily.com/releases/2013/10/131024143317.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins