Featured Research

from universities, journals, and other organizations

Mechanisms, potential biomarkers of tumor cell dormancy

Date:
October 27, 2013
Source:
The Mount Sinai Hospital / Mount Sinai School of Medicine
Summary:
Oncologists have long puzzled over the fact that after cancer treatment, single cancer cells that are dispersed throughout the body -- so-called disseminated tumor cells -- are quick to grow and form secondary tumors called metastases in certain organs, while in other organs they metastasize more slowly, sometimes decades later.

Oncologists have long puzzled over the fact that after cancer treatment, single cancer cells that are dispersed throughout the body -- so-called disseminated tumor cells -- are quick to grow and form secondary tumors called metastases in certain organs, while in other organs they metastasize more slowly, sometimes decades later. Such is the case with head and neck squamous cell carcinoma (HNSCC) cells, which remain dormant when lodged in bone marrow but rapidly form tumors when they make their way into the lungs.

A study published online October 27 by Nature Cell Biology by Bragado et al. reveals that bone marrow contains high levels of TGFβ2, which activates the tumor suppressor gene p38 in tumor cells and triggers a cascade of events that renders tumor cells dormant and keeps HNSCC growth in check. In the lungs, where TGFβ2 is in short supply, these cells rapidly form tumors.

The research team, led by Julio A. Aguirre-Ghiso, PhD, Associate Professor of Medicine, Hematology and Medical Oncology, and Otolaryngology at the Icahn School of Medicine at Mount Sinai, is the first to identify the role of TGFβ2 in determining whether HNSCC cells will remain harmlessly dormant or behave aggressively in a given location. The study confirms a century-old theory called the "seed and soil" theory of metastasis, which suggests that a tumor cell -- the seed -- either sleeps or thrives within the unique environment of each organ -- the soil.

"Our study provides critical evidence to explain why tumor cells gain a firm foothold in certain organs but not in others, where they can remain inactive for long periods of time," explained Dr. Aguirre-Ghiso.

Approximately 80 percent of the animal models the researchers studied contained disseminated HNSCC cells in the lungs, while less than 30 percent contained tumor cells in the bone marrow. After removing the primary tumors, the number of disseminated tumor cells in the bone marrow remained the same for several weeks (equivalent to ~ 3 years in humans). However, the number of tumor cells in the lungs increased shortly after the tumors were removed, suggesting that conditions within each organ had a long-lasting effect on the cells' behavior.

In addition, the researchers discovered that lowering TGFβ2 or p38 levels awakened dormant cells and fueled metastatic growth throughout the body.

These findings may have implications for estrogen-positive breast tumor cells, which have a similar genetic signature to that of dormant HNSCC cells.

"Our study is the first to identify specific characteristics found in cancer cells as well as in the microenvironment in which they are found that determine whether they will metastasize rapidly, posing a new threat to the patient, or will remain dormant for a period of time," said Dr. Aguirre-Ghiso. "Eventually, we may be able to predict, based on markers detected in disseminated tumor cells and/or in the microenvironment, which patients have a dormant disease and which ones will need more aggressive treatment. This information may also lead to the development of new drugs that mimic the pathways that prevent tumor cells from metastasizing."


Story Source:

The above story is based on materials provided by The Mount Sinai Hospital / Mount Sinai School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Paloma Bragado, Yeriel Estrada, Falguni Parikh, Sarah Krause, Carla Capobianco, Hernan G. Farina, Denis M. Schewe, Julio A. Aguirre-Ghiso. TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nature Cell Biology, 2013; DOI: 10.1038/ncb2861

Cite This Page:

The Mount Sinai Hospital / Mount Sinai School of Medicine. "Mechanisms, potential biomarkers of tumor cell dormancy." ScienceDaily. ScienceDaily, 27 October 2013. <www.sciencedaily.com/releases/2013/10/131027185200.htm>.
The Mount Sinai Hospital / Mount Sinai School of Medicine. (2013, October 27). Mechanisms, potential biomarkers of tumor cell dormancy. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2013/10/131027185200.htm
The Mount Sinai Hospital / Mount Sinai School of Medicine. "Mechanisms, potential biomarkers of tumor cell dormancy." ScienceDaily. www.sciencedaily.com/releases/2013/10/131027185200.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins