Featured Research

from universities, journals, and other organizations

New insights into brain neuronal networks

Date:
November 4, 2013
Source:
University of Notre Dame
Summary:
A paper published proposes a novel understanding of brain architecture using a network representation of connections within the primate cortex.

A bow tie representation of the network of connections between cortical areas in the brain.
Credit: University of Notre Dame

A paper published in a special edition of the journal Science proposes a novel understanding of brain architecture using a network representation of connections within the primate cortex. Zoltán Toroczkai, professor of physics at the University of Notre Dame and co-director of the Interdisciplinary Center for Network Science and Applications, is a co-author of the paper "Cortical High-Density Counterstream Architectures."

Related Articles


Using brain-wide and consistent tracer data, the researchers describe the cortex as a network of connections with a "bow tie" structure characterized by a high-efficiency, dense core connecting with "wings" of feed-forward and feedback pathways to the rest of the cortex (periphery). The local circuits, reaching to within 2.5 millimeters and taking up more than 70 percent of all the connections in the macaque cortex, are integrated across areas with different functional modalities (somatosensory, motor, cognitive) with medium- to long-range projections.

The authors also report on a simple network model that incorporates the physical principle of entropic cost to long wiring and the spatial positioning of the functional areas in the cortex. They show that this model reproduces the properties of the connectivity data in the experiments, including the structure of the bow tie. The wings of the bow tie emerge from the counterstream organization of the feed-forward and feedback nature of the pathways. They also demonstrate that, contrary to previous beliefs, such high-density cortical graphs can achieve simultaneously strong connectivity (almost direct between any two areas), communication efficiency, and economy of connections (shown via optimizing total wire cost) via weight-distance correlations that are also consequences of this simple network model.

This bow tie arrangement is a typical feature of self-organizing information processing systems. The paper notes that the cortex has some analogies with information-processing networks such as the World Wide Web, as well as metabolism, the immune system and cell signaling. The core-periphery bow tie structure, they say, is "an evolutionarily favored structure for a wide variety of complex networks" because "these systems are not in thermodynamic equilibrium and are required to maintain energy and matter flow through the system." The brain, however, also shows important differences from such systems. For example, destination addresses are encoded in information packets sent along the Internet, apparently unlike in the brain, and location and timing of activity are critical factors of information processing in the brain, unlike in the Internet.

"Biological data is extremely complex and diverse," Toroczkai said. "However, as a physicist, I am interested in what is common or invariant in the data, because it may reveal a fundamental organizational principle behind a complex system. A minimal theory that incorporates such principle should reproduce the observations, if not in great detail, but in extent. I believe that with additional consistent data, as those obtained by the Kennedy team, the fundamental principles of massive information processing in brain neuronal networks are within reach."


Story Source:

The above story is based on materials provided by University of Notre Dame. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. T. Markov, M. Ercsey-Ravasz, D. C. Van Essen, K. Knoblauch, Z. Toroczkai, H. Kennedy. Cortical High-Density Counterstream Architectures. Science, 2013; 342 (6158): 1238406 DOI: 10.1126/science.1238406

Cite This Page:

University of Notre Dame. "New insights into brain neuronal networks." ScienceDaily. ScienceDaily, 4 November 2013. <www.sciencedaily.com/releases/2013/11/131104152746.htm>.
University of Notre Dame. (2013, November 4). New insights into brain neuronal networks. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2013/11/131104152746.htm
University of Notre Dame. "New insights into brain neuronal networks." ScienceDaily. www.sciencedaily.com/releases/2013/11/131104152746.htm (accessed October 24, 2014).

Share This



More Health & Medicine News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) — An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins