Featured Research

from universities, journals, and other organizations

Astronomy: White dwarfs hide information on dark forces

Date:
November 5, 2013
Source:
Plataforma SINC
Summary:
Researchers have ruled out a multitude of possible parameters for dark photons - a type of dark matter and energy - with the help of white dwarfs. In some aspects, the shining of these dying stars gives more information on dark forces than is provided by Earth-based laboratories.

Birth of a white dwarf (bright spot at the center) in the Dumbbell Nebula.
Credit: Telescopio Joan Oro - Observatori Astronomic del Montsec

Researchers from Europe and the USA have ruled out a multitude of possible parameters for dark photons -- a type of dark matter and energy -- with the help of white dwarfs. In some aspects, the shining of these dying stars gives more information on dark forces than is provided by earth-based laboratories.

The journal Physical Review D has published the study.

White dwarfs represent the final life stage of stars with small or medium masses (less than a tenth of the mass of the Sun) and measures of their luminosity enable us to follow their cooling and the behaviour of their particles precisely in accordance with the standard model used in physics. Any diversion from predicted data should give scientists clues as to what could be out there, such as dark matter and energy.

"The cooling rate of white dwarfs can be measured, even in real time, if we accept as such observations made over the course of 30 years. The presence in their interior of any extra energy source or drain would disrupt this cooling rate, enabling us to discover its presence," explains Jordi Isern from the Institute of Space Sciences (CSIC-IEEC).

Based on this idea, Isern and other researchers from Europe and the USA plan to follow this "indirect and not very costly" method for studying the brightness of white dwarfs to test the validity of new theories and reduce the range of their parameters.

In particular, the scientists focused on the values between which dark photons can fluctuate (these also known as heavy photons due to their mass, which marks them apart from conventional photons, and because they can interact with ordinary matter). These hypothetical particles, related to the 'dark' version of electromagnetism, can only be detected indirectly when they are broken down into electrons and antielectrons (positrons).

"Many of the attempts to expand the standard model are based on introducing new interactions which use dark photons as mediators, which, if they exist, can be created inside white dwarfs and escape freely, behaving as an energy drain which disrupts the development of the star," explains Isern.

The researchers have demonstrated that this effect enables us to discount a wide range of possible masses and coupling intensities under conditions that are impossible or very difficult to achieve in research institutions on Earth.

Despite how useful white dwarfs are in exploring dark forces, the results of the study reveal that, in order to study other hypothetical particles beyond the standard model -- such as neutralinos in supersymmetry models or axions in some quantum theories -- Earth-based laboratories like CERN are still superior.

In any case, white dwarfs provide data of great interest to astrophysicists, including their capacity to give information on the past history of galaxies, such as their age, star formation rate or the remains of neighbouring galaxies that were captured by the Milky Way.

Developments in statistics in quantum mechanics and nuclear physics in the 20th Century enabled us to discover that these dying stars do not keep going due to thermonuclear reactions but because of the pressure exerted by 'degenerate' electrons (a microscopic property of quantum superposition) before the white dwarfs become stellar corpses.


Story Source:

The above story is based on materials provided by Plataforma SINC. Note: Materials may be edited for content and length.


Journal Reference:

  1. Herbert K. Dreiner, Jean-Franηois Fortin, Jordi Isern, Lorenzo Ubaldi. White dwarfs constrain dark forces. Physical Review D, 2013; 88 (4) DOI: 10.1103/PhysRevD.88.043517

Cite This Page:

Plataforma SINC. "Astronomy: White dwarfs hide information on dark forces." ScienceDaily. ScienceDaily, 5 November 2013. <www.sciencedaily.com/releases/2013/11/131105081402.htm>.
Plataforma SINC. (2013, November 5). Astronomy: White dwarfs hide information on dark forces. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2013/11/131105081402.htm
Plataforma SINC. "Astronomy: White dwarfs hide information on dark forces." ScienceDaily. www.sciencedaily.com/releases/2013/11/131105081402.htm (accessed April 23, 2014).

Share This



More Space & Time News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA Chief Outlines Plan for Human Mission to Mars

NASA Chief Outlines Plan for Human Mission to Mars

AFP (Apr. 22, 2014) — NASA administrator Charles Bolden, speaking at the 'Human to Mars Summit' in Washington, says that learning more about the Red Planet can help answer the 'fundamental question' of 'life beyond Earth'. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Nasa Gives You An Excuse to Post a Selfie on Earth Day

Nasa Gives You An Excuse to Post a Selfie on Earth Day

TheStreet (Apr. 22, 2014) — NASA is inviting all social media users to take a selfie of themselves alongside nature and to post it to Twitter, Facebook, Flickr, Instagram, or Google Plus with the hashtag #globalselfie. NASA's goal is to crowd-source a collection of snapshots of the earth, ground-up, that will be used to create one "unique mosaic of the Blue Marble." This image will be available to all in May. Since this is probably one of the few times posting a selfie to Twitter won't be embarrassing, we suggest you give it a go for a good cause. Video provided by TheStreet
Powered by NewsLook.com
SpaceX's Dragon Spacecraft Captured by International Space Station

SpaceX's Dragon Spacecraft Captured by International Space Station

Reuters - US Online Video (Apr. 20, 2014) — SpaceX's unmanned Dragon spacecraft makes a scheduled Easter Sunday rendezvous with the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Raw: Easter Morning Delivery for Space Station

Raw: Easter Morning Delivery for Space Station

AP (Apr. 20, 2014) — Space station astronauts got a special Easter treat: a cargo ship full of supplies. The SpaceX company's cargo ship, Dragon, spent two days chasing the International Space Station following its launch from Cape Canaveral. (April 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins