Featured Research

from universities, journals, and other organizations

Mathematical analysis helps untangle bacterial chromosomes

Date:
November 11, 2013
Source:
San Francisco State University
Summary:
A team of researchers has analyzed how tangled DNA is unknotted and unlinked during the process of E. coli cell division, an understanding that could improve human health by leading to the design of better antibacterial drugs.

When an E. coli cell divides, it must replicate its circular chromosome and pull the resulting circles apart to take up residence in two new cells. It sounds easy enough -- like a magician's trick with rings -- but actually involves a complicated process of unknotting and unlinking of tangled DNA.

In a new study, published online this week in the journal Proceedings of the National Academy of Sciences, SF State Associate Professor of Mathematics Mariel Vazquez and an international team of scientists offer a mathematical analysis of how these chromosomal rings are unlinked by XerCD recombination enzymes.

Antibiotics like ciprofloxacin, prescribed for E. coli infections, target topoisomerases, another type of enzyme involved in DNA unlinking. When treated with these drugs, bacterial cells may find other modes of unlinking like the one presented in Vazquez' study, thus giving the cells a chance for survival. Understanding this unlinking process in E. coli, Vazquez noted, "could also lead to the design of better antibacterial drugs, with a clear positive effect on human health."

Infections by pathogenic E. coli and other bacteria pose a high risk to human health. According to the Centers for Disease Control and Prevention, each year in the United States at least 2 million people become infected with bacteria that are resistant to antibiotics. At least 23,000 people die each year as a direct result of these infections. In order to understand bacterial infections, it is essential to study how cells such as E. coli divide.

Biological experiments had given Vazquez and her colleagues some clues as to how the interlinked E. coli chromosomes separate prior to cell division. But the experiments could not provide a clear picture of the steps along the way to separation.

To fill in this picture, the researchers proposed a rigorous mathematical analysis that used the tangle method to model the changes that take place during the separation. In this case, the "tangle" represents two specific sites along the chromosome bound together by the recombination enzymes. They confirmed that the separation takes place in a stepwise fashion. Chromosomes interlinked after replication are converted into knots, then links again, then knots, until two free circles remain.

The researchers mention that further biological experiments can help justify the assumptions in the mathematical model, but acknowledge that those experiments would be extremely challenging to carry out. "In their absence, the mathematical analysis makes a clear-cut advance over previous biological studies," Vazquez said.

Vazquez stressed that mathematics, physics, computer science and statistics all have a role to play alongside biology in understanding DNA topology.

"It is important for people to know that DNA is not just a sequence of letters. It is a very long molecule that can adopt a complex three-dimensional structure when packaged inside a cell nucleus," she said. "Every biological process that involves DNA will be affected by its topology, and topological changes can have important biological implications."

In 2011, Vazquez was awarded a National Science Foundation CAREER grant to carry out DNA topology studies. As part of the grant, Vazquez works with local elementary schools in the San Francisco Math Circles program. In 2012, she received the Presidential Early Career Award for Scientists and Engineers (PECASE) for her work.


Story Source:

The above story is based on materials provided by San Francisco State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Koya Shimokawa, Kai Ishihara, Ian Grainge, David J. Sherratt, and Mariel Vazquez. FtsK-dependent XerCD-dif recombination unlinks replication catenanes in a stepwise manner. PNAS, November 11, 2013 DOI: 10.1073/pnas.1308450110

Cite This Page:

San Francisco State University. "Mathematical analysis helps untangle bacterial chromosomes." ScienceDaily. ScienceDaily, 11 November 2013. <www.sciencedaily.com/releases/2013/11/131111161434.htm>.
San Francisco State University. (2013, November 11). Mathematical analysis helps untangle bacterial chromosomes. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2013/11/131111161434.htm
San Francisco State University. "Mathematical analysis helps untangle bacterial chromosomes." ScienceDaily. www.sciencedaily.com/releases/2013/11/131111161434.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) — Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com
Cultural Learning In Wild Chimps Observed For The First Time

Cultural Learning In Wild Chimps Observed For The First Time

Newsy (Oct. 1, 2014) — Cultural transmission — the passing of knowledge from one animal to another — has been caught on camera with chimps teaching other chimps. Video provided by Newsy
Powered by NewsLook.com
Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) — A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Annual Dog Surfing Competition Draws California Crowds

Annual Dog Surfing Competition Draws California Crowds

AFP (Sep. 30, 2014) — The best canine surfers gathered for Huntington Beach's annual dog surfing competition, "Surf City, Surf Dog." Duration: 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins