Featured Research

from universities, journals, and other organizations

Tackling large challenge for new modes of drug delivery

Date:
November 12, 2013
Source:
University of Lincoln
Summary:
Research being carried out by academics could result in new more effective drug treatments for prostate cancer, Multiple Sclerosis and cystic fibrosis.

Research being carried out by academics at the University of Lincoln, UK, could result in new more effective drug treatments for prostate cancer, Multiple Sclerosis and cystic fibrosis.

Currently only 15 per cent of protein targets in human cancer cells can be 'targeted therapeutically', rendering the remaining 85 per cent of proteins out of reach of traditional small drug treatments. Academics are finding new pathways to deliver medicinal 'biologics' to these diseased cells.

Dr Ishwar Singh, from the School of Pharmacy, University of Lincoln, UK, is looking to develop a platform technology for tumor-specific delivery of biologics -- large molecule drugs based on nucleic acids, proteins and peptides with a potent and highly therapeutic effect.

He said: "Large molecule drugs are just that -- too big to pass through to the diseased cells. The challenge is to find a way to deliver these large molecules to the cells. Cell penetrating peptides (CPPs) are known to facilitate the delivery of therapeutic biologics into target cells. Unfortunately current CPPs are highly toxic, which has prevented their widespread use. The aim of our project is to develop a non-toxic drug delivery method which enables CPPs to selectively pass through cell membranes of cancer cells, delivering the drug to the target site without causing toxicity.

"In the long-term we will be able to use this approach to treat conditions such as Multiple Sclerosis, cystic fibrosis and even some forms of cancer that are currently resistant to available drugs. We are developing a platform technology which could then be applied to a range of conditions."

Biologics differ from small drug molecules not only in terms of size, but also in how they are made, how they behave, their mode of action in the body and their suitability for certain drug forms.

Small, chemically manufactured molecules are the classic active substances and still make up more than 90 per cent of drugs on the market today. However, therapeutics based on large molecules, such as antibodies, are becoming increasingly important.

Small molecules can be processed into easily ingestible tablets or capsules. When the tablet dissolves in the gastrointestinal tract, the dissolved active substance is absorbed into the bloodstream via the intestinal wall. Small drugs can then reach the site of action in the body because of their tiny size. Their small structure and chemical composition also helps them to penetrate cell membranes.

Large molecule drugs, which are created by biological or synthetic processes, are made up of proteins, nucleic acids, sugars or a complex combination of these substances, or may be living entities such as cells. Delivery of these therapeutics to target sites is therefore a more complex process.

Dr Singh has been awarded a Royal Society Research Grant which will facilitate his research with colleague Dr Driton Vllasaliu for the next year.


Story Source:

The above story is based on materials provided by University of Lincoln. Note: Materials may be edited for content and length.


Cite This Page:

University of Lincoln. "Tackling large challenge for new modes of drug delivery." ScienceDaily. ScienceDaily, 12 November 2013. <www.sciencedaily.com/releases/2013/11/131112090815.htm>.
University of Lincoln. (2013, November 12). Tackling large challenge for new modes of drug delivery. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2013/11/131112090815.htm
University of Lincoln. "Tackling large challenge for new modes of drug delivery." ScienceDaily. www.sciencedaily.com/releases/2013/11/131112090815.htm (accessed August 22, 2014).

Share This




More Health & Medicine News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins