Featured Research

from universities, journals, and other organizations

Fusion foe lends a helping hand: Recent experiments breathe new understanding into oxygen's role in fusion devices

Date:
November 13, 2013
Source:
American Physical Society
Summary:
Recent laboratory experiments and atomistic simulations have found that the oxygen bound by lithium at the walls of fusion devices plays a key role in improving plasma performance.

The lithium coating on graphite, which appears mountainous in this graphic done at microscopic scale, provides the perfect setting for oxygen to control the hot deuterium plasma.
Credit: C.N. Taylor and J.P. Allain

Although oxygen is required to sustain life, oxygen sucks the life out of fusion by radiating away too much power from the high-temperature plasma. Accordingly, great efforts are expended to reduce the oxygen found in fusion facilities. Surprisingly, recent laboratory experiments and atomistic simulations have found that the oxygen bound by lithium at the walls of fusion devices plays a key role in improving plasma performance.

Researchers at the National Spherical Torus Experiment (NSTX) that is now being upgraded at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have long used lithium wall conditioning as a method for improving plasma performance. These improvements include elimination of otherwise virulent edge plasma instabilities, and an improvement in the energy confinement of the plasma, both of which are correlated with a reduction of neutrals that 'recycled' at the plasma facing components. Until recently, researchers assumed that the lithium was primarily responsible for these benefits, although the precise mechanism remained unknown.

Contributing to the mystery is the fact that walls of NSTX are made of carbon in the form of graphite tiles. Lithium tends to seep into graphite, so it was unclear why any lithium would be left to capture anything that landed on the surface of the tiles. Instead, it appears that the lithium interacts with both the carbon in the tiles, and the oxygen that is naturally embedded in them, to create a new plasma-facing wall that contains all three elements. Recent studies have now shed light on how effectively this special wall surface can improve plasma performance. These studies have demonstrated the strong reaction that takes place when deuterium, the hydrogen isotope used in NSTX plasmas, comes into contact with lithium and oxygen at the plasma-facing wall of the fusion facility.

Researchers first used a highly sensitive measurement technique called "X-ray photoelectron spectroscopy," or XPS, to detect the chemistry of the top few nanometers of the lithium-covered graphite tiles in NSTX experiments. Researchers then used computer simulations, led by P.S. Krstic, to replicate the contact between deuterium and graphite tiles impregnated with lithium and oxygen. Results showed that the lithiated and oxidized graphite captured much of the deuterium, mirroring what occurred in NSTX. (See "Deuterium Uptake in Magnetic-Fusion Devices with Lithium-Conditioned Carbon Walls" by P. S. Krstic et al. in Physical Review Letters 110, 105001 (2013).)

When researchers changed the simulation to eliminate the oxygen, leaving only lithium on the graphite tiles, the deuterium retention was quantitatively lower, and carbon erosion higher. As a computational exercise, the next simulation reversed the scenario to bring the deuterium into contact with a matrix of just graphite and oxygen, which would in practice be difficult to realize because of excessive oxygen contamination of the hot plasma. Surprisingly the deuterium retention was even higher than in the other two simulations.

"The combination of these simulations and experiments leads to the conclusion that lithium forms the 'glue' that allows the carbon-lithium-oxygen surface layer to very effectively retain deuterium and reduce recycling. Without the lithium, the high levels of oxygen in the surface layers needed to see this beneficial effect would likely contaminate and cool the main plasma" said physicist Chase Taylor, who led the experimental portion of the surface physics research at Purdue University with PI Prof. Jean Paul Allain who recently joined University of Illinois Urbana-Champaign. "Our results show how lithium should be prepared and maintained to yield optimum plasma performance."


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society. "Fusion foe lends a helping hand: Recent experiments breathe new understanding into oxygen's role in fusion devices." ScienceDaily. ScienceDaily, 13 November 2013. <www.sciencedaily.com/releases/2013/11/131113132307.htm>.
American Physical Society. (2013, November 13). Fusion foe lends a helping hand: Recent experiments breathe new understanding into oxygen's role in fusion devices. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2013/11/131113132307.htm
American Physical Society. "Fusion foe lends a helping hand: Recent experiments breathe new understanding into oxygen's role in fusion devices." ScienceDaily. www.sciencedaily.com/releases/2013/11/131113132307.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins