Featured Research

from universities, journals, and other organizations

Fantastic phonons: Blocking sound, channeling heat with 'unprecedented precision'

Date:
November 13, 2013
Source:
Georgia Institute of Technology
Summary:
The phonon, like the photon or electron, is a physical particle that travels like waves, representing mechanical vibration. Phonons transmit everyday sound and heat. Recent progress in phononics has led to the development of new ideas and devices that are using phononic properties to control sound and heat, according to a new review.

Martin Maldovan, of the Georgia Institute of Technology, has published a review article on phononics in Nature.
Credit: Rob Felt.

Imagine living on a bustling city block, but free from the noise of car horns and people on the street. The emerging field of phononics could one day make this a reality.

The phonon, like the photon or electron, is a physical particle that travels like waves, representing mechanical vibration. Phonons transmit everyday sound and heat. Recent progress in phononics has led to the development of new ideas and devices that are using phononic properties to control sound and heat, according to a new review in Nature.

One application that has scientists buzzing is the possibility of controlling sound waves by designing and fabricating cloaking shells to guide acoustic waves around a certain object -- an entire building, perhaps -- so that whatever is inside the shell is invisible to the sound waves.

The future possibilities for phonons might also solve the biggest challenges in energy consumption and buildings today. Understanding and controlling the phononic properties of materials could lead to novel technologies to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection, all by developing new materials to manipulate sound and heat. These ideas are all possible in theory, but to make them a reality, phononics will have to inspire the same level of scientific innovation as electronics, and today that's not the case.

"People know about electrons because of computers, and electromagnetic waves because of cell phones, but not so much about phonons," said Martin Maldovan, a research scientist in the School of Chemical and Biomolecular Engineering at the Georgia Institute of Technology.

Maldovan's review article appeared online Nov. 13 in the journal Nature. In the article he blends eight different subjects in the field of phononics, describing advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics and thermocrystals.

These technologies "herald the next technological revolution in phononics," he said. All of these areas share a common theme: manipulating mechanical vibrations, but at different frequences.

The hottest fields in phononics, Maldovan said, is the development of acoustic and thermal metamaterials. These materials are capable of cloaking sound waves and thermal flows. The phononics approach to cloaking is based on electromagnetic cloaking materials that are already in use for light.

Maldovan, formerly a research scientist at the Massachusetts Institute of Technology, also conducts phononics research of his own. This past summer, Maldovan published an article in the journal Physical Review Letters, describing an invention for controlling the conduction of heat through solid objects.

Known as thermocrystals, this new area of phononics research seeks to manage heat waves in a similar manner as sound and light waves, by channeling the flow of heat at certain frequencies. The technology could lead to devices that convert heat into energy, or the thermal equivalent of diodes, which could help data centers solve the problem of massive heat generated by their servers.

"The field of Phononics is relatively new, and when you have something new you don't know what you will find," Maldovan said. "You're always thinking 'what can I do with that?'"


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. The original article was written by Brett Israel. Note: Materials may be edited for content and length.


Journal Reference:

  1. Martin Maldovan. Sound and heat revolutions in phononics. Nature, 2013; 503 (7475): 209 DOI: 10.1038/nature12608

Cite This Page:

Georgia Institute of Technology. "Fantastic phonons: Blocking sound, channeling heat with 'unprecedented precision'." ScienceDaily. ScienceDaily, 13 November 2013. <www.sciencedaily.com/releases/2013/11/131113143215.htm>.
Georgia Institute of Technology. (2013, November 13). Fantastic phonons: Blocking sound, channeling heat with 'unprecedented precision'. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/11/131113143215.htm
Georgia Institute of Technology. "Fantastic phonons: Blocking sound, channeling heat with 'unprecedented precision'." ScienceDaily. www.sciencedaily.com/releases/2013/11/131113143215.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins