Featured Research

from universities, journals, and other organizations

New theoretical models aid the search for Earth-like planets

Date:
November 14, 2013
Source:
University of Bern
Summary:
Researchers have developed a method to simplify the search for Earth-like planets: By using new theoretical models they rule out the possibility of Earth-like conditions, and therefore life, on certain planets outside our solar system – and limit their search by doing so.

This artist's conception illustrates Kepler-22b, a planet discovered by the Kepler space telescope. The relation between the planetary mass and radius will determine whether this is an Earth-like planet.
Credit: NASA/Ames/JPL-Caltech

Researchers from Bern have developed a method to simplify the search for Earth-like planets: By using new theoretical models they rule out the possibility of Earth-like conditions, and therefore life, on certain planets outside our solar system -- and limit their search by doing so.

Related Articles


Currently extensive observational programs are being developed all over the world, with the aim to detect planets outside our solar system that are able to accommodate life -- a sheer impossible task. "The question whether so-called exoplanets are habitable or not is difficult to answer, as we do not know all the necessary conditions a planet has to fulfill in order to be habitable," said Yann Alibert of the Center for Space and Habitability (CSH) at the University of Bern.

This is why the Bernese scientist chose an alternative approach for his study, which is published in the journal "Astronomy & Astrophysics": Based on the mass and radius of a planet Yann Alibert was able to determine criteria that exclude the possibility of life as we know it. The data required first, planetary mass, is for example provided by the HARPS-spectrograph in Chile, which was developed by the University of Geneva and Bern in cooperation with further partners. From 2017 the space telescope "CHEOPS," developed and built under the supervision of the ESA and the CSH, will be used to accurately determine the radius of certain planets, the second required data. Thanks to Yann Alibert's method, one is able to deduce whether a planet is uninhabitable from the data provided by HARPS and CHEOPS. "This theoretical model will help astronomers concentrate on promising candidates in their search for Earth-like planets," says Alibert.

No life without a Carbon cycle or water in liquid form

Two conditions, without which life is not possible, form the foundation of the theoretical models: Water in liquid form and a so-called Carbon cycle must be found on the exoplanet. The Carbon cycle is a geological process that regulates the CO2-level in the atmosphere and with that, the temperature of the planet's surface: In the ocean, CO2, in its dissolved form, undergoes a chemical reaction and is then transported into Earth's mantle. Because of the high temperature in the inner parts of Earth's mantle, the CO2 is released back into the atmosphere during volcanic eruptions.

Exotic ice makes planets hostile

If, however, a planet with a given mass has a very large radius, the density will be very low. Consequently there will be no Carbon cycle or liquid water on that planet. The reason for this is that low density is an indicator for a lot of gas and/or water. If a planet consists of a lot of gas, the atmospheric pressure on the surface may be so high that water is not able to keep its liquid form.

If the planet is covered by an immense amount of water, the pressure at the bottom of the ocean will increase to such an extent that water occurs in the form of "Ice VII," which does not exist on Earth. "Ice VII" has such a high density so that it settles on the ocean floor. There, it forms a barrier between the rocks on the ocean floor and the water above -- preventing the Carbon cycle.

"Our study shows that a planet, that consists of a lot of gas or water, is not habitable," explained Yann Alibert.

Most "Super Earths" are not habitable

The largest radius, at which a Carbon cycle and liquid water can occur, depends on the planetary mass: A planet with the same mass as Earth can have, at the maximum, a radius 1.7 times Earth radius, including the gas and hydrosphere. A "Super Earth ," 12 times more massive than Earth, can have a radius 2.2 times Earth radius. However, according to Alibert, mainly larger exoplanets have been discovered up until now. In the near future, smaller and more promising planets will be targeted, thanks, in particular, to the CHEOPS's high sensitivity.


Story Source:

The above story is based on materials provided by University of Bern. Note: Materials may be edited for content and length.


Cite This Page:

University of Bern. "New theoretical models aid the search for Earth-like planets." ScienceDaily. ScienceDaily, 14 November 2013. <www.sciencedaily.com/releases/2013/11/131114094800.htm>.
University of Bern. (2013, November 14). New theoretical models aid the search for Earth-like planets. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2013/11/131114094800.htm
University of Bern. "New theoretical models aid the search for Earth-like planets." ScienceDaily. www.sciencedaily.com/releases/2013/11/131114094800.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Space & Time News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Crew Blasts Off for Int'l Space Station

Raw: Crew Blasts Off for Int'l Space Station

AP (Nov. 23, 2014) A Russian capsule carrying three astronauts from Russia, the United States and Italy has blasted off for the International Space Station. (Nov. 23) Video provided by AP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Crowdfunded Moon Mission Offers To Store Your Digital Memory

Crowdfunded Moon Mission Offers To Store Your Digital Memory

Newsy (Nov. 19, 2014) Lunar Mission One is offering to send your digital memory (or even your DNA) to the moon to be stored for a billion years. Video provided by Newsy
Powered by NewsLook.com
Accidents Ignite Debate on US Commercial Space Travel

Accidents Ignite Debate on US Commercial Space Travel

AFP (Nov. 19, 2014) Serious accidents with two US commercial spacecraft within a week of each-other in October have re-ignited the debate over the place of private corporations in the exploration of space. Duration: 02:08 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins