Featured Research

from universities, journals, and other organizations

Steering electrons along chemical bonds

Date:
November 25, 2013
Source:
Forschungsverbund Berlin e.V. (FVB)
Summary:
Electron motions induced by a strong electric field are mapped in space and time with the help of femtosecond x-ray pulses. An x-ray movie of the crystal lithium hydride shows that the electric interaction between electrons has a decisive influence on the direction in which they move.

Crystals with rock salt structure. Upper crystal: sodium chloride (NaCl) with blue balls for Na+ ions and green balls for Cl- ions. Lower crystal: lithium hydride (LiH) with small blue balls for Li0.5+ ions and white balls for H0.5- ions. The grey-shaded plane indicates the sectional views.
Credit: MBI

Electron motions induced by a strong electric field are mapped in space and time with the help of femtosecond x-ray pulses. An x-ray movie of the crystal lithium hydride shows that the electric interaction between electrons has a decisive influence on the direction in which they move.

An ionic crystal is a regular arrangement of positively and negatively charged ions in space. A prototype material is the rock salt crystal sodium chloride (NaCl) with elementary units in form of a cube. This cube contains positively charged Na+ ions in which one electron is lacking, and negatively charged Cl- ions with one extra electron (Fig. 1). Another material with this cubic structure is lithium hydride (LiH), consisting of lithium (Li) and hydrogen (H) atoms. In contrast to the ionic rock salt Na+Cl-, counting the charges in LiH gives Li0.5+H0.5-, striking a happy medium between the ionic case Li+H- and the so-called covalent case Li0+H0- in which electrons are shared between lithium and hydrogen.

The peculiar behavior of LiH originates from the strong electric forces between all charged particles in the crystal. Electric interactions lead to a spatial arrangement of electrons in which the total electric energy is minimized. Application of an external electric field to the crystal sets the electrons in motion, again strongly influenced by the spatial correlations among all electrons. Electron correlations have been a subject of many theoretical studies while direct experimental insight is mostly lacking.

A research team at the Max-Born-Institute has now addressed electron correlations by following ultrafast electron motions in space and time, in this way generating ‘maps’ of the electron distribution. In the experiments, electrons are set in motion by a very strong electric field which is provided for the very short time interval of 50 fs (1 fs = 10-15 s) by a strong optical pulse interacting with the LiH material. Then, a 100 fs long x-ray pulse is scattered from the ‘excited’ crystal and images the momentary electron distribution.

In the current issue of Physical Review Letters, Vincent Juvι, Marcel Holtz, Flavio Zamponi, Michael Woerner, Thomas Elsaesser, and Andreas Borgschulte present transient electron distributions, showing an extremely fast shift of electronic charge from the Li0.5+ to the H0.5- ions over a distance of 0.2 nm. This totally unexpected result means that the material becomes more ionic upon application of the external field, a behavior in contrast to other ionic materials such as LiBH4 or  NaBH4. Since the electric field of the optical pulse reverses its direction every 1.3 fs, the electron is driven forth and back between the two sites with an extremely high speed of approximately one percent of the speed of light (c = 300.000 km/s).

Immediately after the optical pulse the electrons return and the original electron distribution is restored. A qualitative explanation of the unexpected electron shift is as follows: The electric field accelerates the electrons in such a way that they are more uniformly distributed over the unit cell. Li has initially more electrons with the consequence of a loss of electrons during the optical pulse.

Because of the small electron number in LiH, all electrons contribute to this effect, making the electron distribution very sensitive to correlation effects. This picture is supported by theoretical calculations of the electron distribution. The manipulation of electron distributions by strong electric fields provides control over the material’s electric properties on an extremely short time scale, a fact that may lead to applications in ultrafast electrical switches.


Story Source:

The above story is based on materials provided by Forschungsverbund Berlin e.V. (FVB). Note: Materials may be edited for content and length.


Journal Reference:

  1. Vincent Juvι, Marcel Holtz, Flavio Zamponi, Michael Woerner, Thomas Elsaesser, A. Borgschulte. Field-Driven Dynamics of Correlated Electrons in LiH and NaBH_{4} Revealed by Femtosecond X-Ray Diffraction. Physical Review Letters, 2013; 111 (21) DOI: 10.1103/PhysRevLett.111.217401

Cite This Page:

Forschungsverbund Berlin e.V. (FVB). "Steering electrons along chemical bonds." ScienceDaily. ScienceDaily, 25 November 2013. <www.sciencedaily.com/releases/2013/11/131125101106.htm>.
Forschungsverbund Berlin e.V. (FVB). (2013, November 25). Steering electrons along chemical bonds. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/11/131125101106.htm
Forschungsverbund Berlin e.V. (FVB). "Steering electrons along chemical bonds." ScienceDaily. www.sciencedaily.com/releases/2013/11/131125101106.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) — The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) — After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins