New! Sign up for our free email newsletter.
Science News
from research organizations

Steering electrons along chemical bonds

Date:
November 25, 2013
Source:
Forschungsverbund Berlin e.V. (FVB)
Summary:
Electron motions induced by a strong electric field are mapped in space and time with the help of femtosecond x-ray pulses. An x-ray movie of the crystal lithium hydride shows that the electric interaction between electrons has a decisive influence on the direction in which they move.
Share:
FULL STORY

Electron motions induced by a strong electric field are mapped in space and time with the help of femtosecond x-ray pulses. An x-ray movie of the crystal lithium hydride shows that the electric interaction between electrons has a decisive influence on the direction in which they move.

An ionic crystal is a regular arrangement of positively and negatively charged ions in space. A prototype material is the rock salt crystal sodium chloride (NaCl) with elementary units in form of a cube. This cube contains positively charged Na+ ions in which one electron is lacking, and negatively charged Cl- ions with one extra electron (Fig. 1). Another material with this cubic structure is lithium hydride (LiH), consisting of lithium (Li) and hydrogen (H) atoms. In contrast to the ionic rock salt Na+Cl-, counting the charges in LiH gives Li0.5+H0.5-, striking a happy medium between the ionic case Li+H- and the so-called covalent case Li0+H0- in which electrons are shared between lithium and hydrogen.

The peculiar behavior of LiH originates from the strong electric forces between all charged particles in the crystal. Electric interactions lead to a spatial arrangement of electrons in which the total electric energy is minimized. Application of an external electric field to the crystal sets the electrons in motion, again strongly influenced by the spatial correlations among all electrons. Electron correlations have been a subject of many theoretical studies while direct experimental insight is mostly lacking.

A research team at the Max-Born-Institute has now addressed electron correlations by following ultrafast electron motions in space and time, in this way generating ‘maps’ of the electron distribution. In the experiments, electrons are set in motion by a very strong electric field which is provided for the very short time interval of 50 fs (1 fs = 10-15 s) by a strong optical pulse interacting with the LiH material. Then, a 100 fs long x-ray pulse is scattered from the ‘excited’ crystal and images the momentary electron distribution.

In the current issue of Physical Review Letters, Vincent Juvé, Marcel Holtz, Flavio Zamponi, Michael Woerner, Thomas Elsaesser, and Andreas Borgschulte present transient electron distributions, showing an extremely fast shift of electronic charge from the Li0.5+ to the H0.5- ions over a distance of 0.2 nm. This totally unexpected result means that the material becomes more ionic upon application of the external field, a behavior in contrast to other ionic materials such as LiBH4 or  NaBH4. Since the electric field of the optical pulse reverses its direction every 1.3 fs, the electron is driven forth and back between the two sites with an extremely high speed of approximately one percent of the speed of light (c = 300.000 km/s).

Immediately after the optical pulse the electrons return and the original electron distribution is restored. A qualitative explanation of the unexpected electron shift is as follows: The electric field accelerates the electrons in such a way that they are more uniformly distributed over the unit cell. Li has initially more electrons with the consequence of a loss of electrons during the optical pulse.

Because of the small electron number in LiH, all electrons contribute to this effect, making the electron distribution very sensitive to correlation effects. This picture is supported by theoretical calculations of the electron distribution. The manipulation of electron distributions by strong electric fields provides control over the material’s electric properties on an extremely short time scale, a fact that may lead to applications in ultrafast electrical switches.


Story Source:

Materials provided by Forschungsverbund Berlin e.V. (FVB). Note: Content may be edited for style and length.


Journal Reference:

  1. Vincent Juvé, Marcel Holtz, Flavio Zamponi, Michael Woerner, Thomas Elsaesser, A. Borgschulte. Field-Driven Dynamics of Correlated Electrons in LiH and NaBH_{4} Revealed by Femtosecond X-Ray Diffraction. Physical Review Letters, 2013; 111 (21) DOI: 10.1103/PhysRevLett.111.217401

Cite This Page:

Forschungsverbund Berlin e.V. (FVB). "Steering electrons along chemical bonds." ScienceDaily. ScienceDaily, 25 November 2013. <www.sciencedaily.com/releases/2013/11/131125101106.htm>.
Forschungsverbund Berlin e.V. (FVB). (2013, November 25). Steering electrons along chemical bonds. ScienceDaily. Retrieved March 18, 2024 from www.sciencedaily.com/releases/2013/11/131125101106.htm
Forschungsverbund Berlin e.V. (FVB). "Steering electrons along chemical bonds." ScienceDaily. www.sciencedaily.com/releases/2013/11/131125101106.htm (accessed March 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES