Featured Research

from universities, journals, and other organizations

Ultra-sensitive force sensing with levitating nanoparticle

Date:
November 25, 2013
Source:
ICFO-The Institute of Photonic Sciences
Summary:
A recent study achieved the highest force sensitivity ever observed with a nano-mechanical resonator. The scientific results of this study have just been published.

This is a silica nanoparticle trapped by tightly focused laser beams.
Credit: ICFO

A recent study led by researchers of the Institute of Photonic Sciences (ICFO) achieved the highest force sensitivity ever observed with a nano-mechanical resonator. The scientific results of this study have been published in Nature Physics.

Nano- and micromechanical oscillators with high quality (Q) factors have gained much attention for their potential application in sensing, signal processing and transduction as well as in fundamental research aiming at observing quantum effects in increasingly larger systems. Despite recent advances in the design and fabrication of mechanical resonators, their Q-factor has so far been limited by coupling to the environment through physical contact to a support. To overcome this limitation, the present work proposes to use optically levitated objects in vacuum that do not suffer from clamping losses.

In this recent ICFO study, scientists have optically levitated nanoparticles in high vacuum conditions and measured the highest Q-factor ever observed in nano- or micromechanical systems. The combination of an ultra-high Q-factor together with the tiny mass of the nanoparticles leads to an unprecedented force sensitivity at room temperature. The system is so sensitive that the weak forces arising from collisions between the nanoparticle and the residual air molecules are enough to drive it into the nonlinear regime. For the first time, this study demonstrates that ultra-high Q-factor nano-resonators intrinsically behave nonlinearly. In addition, the researchers show that, when combined with feedback cooling, the levitating nanoparticle can be used as a force-sensor, sufficiently sensitive to detect ultra-weak interactions, such as non-Newtonian gravity-like forces and tiny forces arising from quantum vacuum fluctuations.

Gieseler remarks that "Thermal motion is commonly observed in nano-mechanical systems. However, observing nonlinear features of thermal motion is a true novelty and, thus, challenges our understanding of how these high-Q nano-mechanical systems behave."

The advent of this new class of nano-mechanical oscillators will open new avenues for ultrasensitive force sensing and benefit the experimental investigation of quantum physics.

This discovery has been possible thanks to the collaboration between the Plasmon Nano-optics group led by ICREA Prof. at ICFO Romain Quidant and the Nano-Photonics group led by Prof. Lukas Novotny, from the Photonics Laboratory (ETH Zurich), as well as the support from the Fundaciσ Cellex Barcelona through its Nest program.


Story Source:

The above story is based on materials provided by ICFO-The Institute of Photonic Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jan Gieseler, Lukas Novotny, Romain Quidant. Thermal nonlinearities in a nanomechanical oscillator. Nature Physics, 2013; DOI: 10.1038/nphys2798

Cite This Page:

ICFO-The Institute of Photonic Sciences. "Ultra-sensitive force sensing with levitating nanoparticle." ScienceDaily. ScienceDaily, 25 November 2013. <www.sciencedaily.com/releases/2013/11/131125101159.htm>.
ICFO-The Institute of Photonic Sciences. (2013, November 25). Ultra-sensitive force sensing with levitating nanoparticle. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/11/131125101159.htm
ICFO-The Institute of Photonic Sciences. "Ultra-sensitive force sensing with levitating nanoparticle." ScienceDaily. www.sciencedaily.com/releases/2013/11/131125101159.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) — Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins